5.3 The IF-statement

Introduction to Matlab, A brief tutorial

Harris Dellas

Contents 5.4 How to break a FOR or WHILE-loop 20
1 Introduction 2 6 Importing and exporting data 20
6.1 The diary command 20
2 Matlab basics 2 6.2 Save workspace variableson disk 20
2.1 Preliminaries 2 6.3 Retrieving data and results 21
2.2 Declaring variables oL 3 6.4 Request user input Lo 21
2.3 Basic manipulations of matrices 5
2.4 Matrix and array operations 6 References I
2.5 Relational and logical operators 7
2.6 Building special matrices. oL 8
2.7 More built-in functions 9
2.8 Gettinghelp. 11
3 Graphics 12
3.1 Histogram 12
3.2 Plotting series versus their index 12
3.3 Scatterplots (2D plots)o 12
3.4 Adding titles, labels and grids 13
3.5 Creating subplots 14
3.6 3Dplots 15
3.7 Savegraphs o 15
4 Scripts and functions 16
4.1 Script Mfiles L 16
4.2 Function M-files oo 16
5 Controlling the flow 18
51 The FOR-loop 18
5.2 The WHILE-loop 19

1 INTRODUCTION

1 Introduction

Matlab is a high level programming language for technical computing.’
Its basic data element is a matrix (the name Matlab therefore stands
for Matrix laboratory). Since many models and solution procedures in
economics are naturally stated as a series of matrix operations, Matlab
together with programming languages of the same class is widely used in
economics.

In this course we will learn basic Matlab. Matlab offers a huge amount of
so called operators and functions. This manual introduces just a subset of
them. However, the Matlab Help library offers a complete overview on all
existing elements of Matlab. The software bundle also contains a so called
Help desk that is useable as an Internet page.

1Comparable high level programming languages would be GAMS, GAUSS and Math-
ematica. Lower level languages are Basic, Fortran, C, C++ and Java.

2 Matlab basics

2.1 Preliminaries

We start the software as usual (by double-clicking the respective icon). This
opens the Matlab command window (sometimes called Matlab prompt).
One can either work on line by submitting commands. Or use the Matlab
editor/debugger to write a program (set of instructions) and submit it.

As you work in the command window, Matlab remembers the com-
mands you enter as well as the values of any wvariable you create. These
commands and variables are said to reside in the Matlab workspace.

Sometimes it is useful to delete variables from the workspace. Just
type

> clear
and all the variables defined so far are gone.

As in the example above, Matlab code is written in Courier. There
is a command after every ». If you want to process a command, press
Enter (Return key) and the result will appear in the command window.
Using a semicolon (;) at the end of a command line, makes Matlab to skip
the display of the results

> 2+3;

>
in contrast to

> 2+3

> b
Preceding commands can be re-displayed by pressing the up-cursor.
When Matlab displays numerical results, it follows several rules. By

default, Matlab displays a real number with approximately four digits to
the right of the decimal point. If the significant digits in the result are

2 MATLAB BASICS

outside this range, Matlab displays the result in scientific notation, similar
to scientific calculators. If you prefer to see numerical results up to 15
positions behind the dot, use the command

> format long

In order to set back the default setting, type

> format short

To get the current working directory or folder displayed, type

> cd

cd directory-name sets the current directory to the one specified.
cd .. moves to the directory above the current one. The command dir
provides a list of all files in the directory (or folder).

To interrupt a running execution, type Ctrl+C.

2.2 Declaring variables

In Matlab each variable is a matrix (or rectangular data array). Since a
matrix contains m rows and n columns, it is said to be of dimension m-by-
n. An m-by-1 or 1-by-n matrix ist called a vector. A scalar, finally, is a
1-by-1 matrix.

2.2.1 Building a matrix

In order to build a matrix you have several options. One way to do it is to
declare a matrix. . .

. as when you write it by hand

> A=[1 2 3
4 5 6]
A =

o=
a1

. by separating rows with ‘;’
> B=[4 5 6;7 8 9]
. or element by element

> C(1,1)=3;
> C(1,2)=4;
> C(1,3)=5;
> C(2,1)=6;
> €(2,2)=T;
> €(2,3)=8;

You can give a matrix whatever name you want. Numbers may be
included. (Matlab is sensitive with respect to the upper or lower case.)

If a variable has previously been assigned a value, the new value
overrides the predecessor.

Suppose you want to look at matrix C. All you have to do is type
either

> C

C =
3 4 5
6 7 8

or

> disp(C)
1 2 3
4 5 6

In general, when you enter > C, Matlab does the following: It checks to
see if C is a wvariable in the Matlab workspace; if not, it checks to see if
C' is a built-in-function; if not, it checks if an M-file named C.m exists in
the current directory; if not, it checks to see if C.m exists anywhere on
the Matlab search path, by searching the path in the order in which it is

2 MATLAB BASICS

specified. Finally, if Matlab can’t find C.m anywhere on the Matlab search
path, an error message will appear in the command window.
2.2.2 Declaring an empty matrix

In Matlab, there is no need to declare a variable before assigning a value
to it — but it is recommended.

> D=[]

D =
(]
2.2.3 Building a matrix out of several submatrices

You can build matrices out of several submatrices. Suppose you have
submatrices A to D.

> A=[1 2;3 4];
> B=[5 6 7,8 10];
> C=[3 4;5 6];
> D=[1 2 3;4 5 6];

In order to build E, which is given by { é IB) }, you type:

> E=[A B;C D]

E =
1 2 5 6 7
3 4 8 9 10
3 4 1 2 3
5 6 4 5 6

2.2.4 Declaring a string matrix

A variable in Matlab is one of two types: numeric or string. A string
matrix is like any other, except the elements in it are interpreted as ASCII
numbers. To create a string variable, we enclose a string of characters in
apostrophes. Since a string variable is in fact a row vector of numbers, it is
possible to create a list of strings by creating a matrix in which each row is

a separate string.
Note: As with all standard matrices, the rows must be of the same length.

> x=[’ab’;’cd’]
ab
cd

> x=[’ab’ ’cd’]

abcd

2.2.5 Declaring a vector

A vector is simply a 1-by-n or m-by-1 matrix.

> f=[1 2 3]

1 2 3

Matlab always creates a vector as a row (or l-by-n) vector. How-
ever, it is very easy to create a column (or m-by-1) vector out of it. All you
have to do is adding an apostrophe (transposition of a matriz - compare
matrix operations further below).

> f=[1 2 3]’
f =

1

2

3

You may be able to create vectors of special form by indicating an
initial value, the step and a final value.

2 MATLAB BASICS

> g=[1:0.5:5]

g:

Columns 1 through 5

1.0000 1.5000 2.0000 2.5000 3.0000
Columns 6 through 9

3.5000 4.0000 4.5000 5.0000

No step means step 1.

> x=[3:5]"
X 3

3

4

5

2.2.6 Declaring a scalar (or 1-by-1 matrix)

A scalar is given by a 1-by-1 matrix. E.g., consider the following single
number:

> a=2

2.2.7 Managing the Matlab workspace

To see what variable names are in the Matlab workspace, issue the
command who:

> who
Your variables are:
A B C

For more detailed information, use the command whos:

> whos

Name Size Bytes Class

A 2x3 48 double array
B 2x3 48 double array
C 2x3 48 double array

Grand total is 18 elements using 144 bytes
or check the workspace window.
As shown earlier, the command
> clear

deletes variables from the Matlab workspace.

2.3 Basic manipulations of matrices
2.3.1 Using partitions of matrices

One of the most basic operations is to extract some elements of a matrix
(called a partition of matrices). Consider

A=
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

In paragraph 2.2.1 Building a matriz we have learnt that e.g. the
element as3 of Matrix A is called A(2,3) in Matlab. Let us now isolate the
central matrix

B =

W N
= o W

In order to do this we type

2 MATLAB BASICS 6

> B=A(1:4,2:3) Suppose we have a vector B. We want to obtain matrix A from B.
B = > A=reshape(B,3,2)
2 3
3 4 A -
4 5 1 2
5 1 3 4
5 6

Suppose we just want to select columns 1 and 3, but take all the
lines.

2.4 Matrix and array operations
> B=A(:,[1 3])

2.4.1 Transposition of a matrix

B =
1 3 c=
5 a 3 4 65
6 7 8
3 5
4 1
5 2 > C’
where (:) means select all.
ans =
3 6
2.3.2 Making vectors from matrices and reverse 4 7
5 8

Suppose that we want to obtain the vectorialization of a matrix, that is,

you want to obtain vector B from matrix A. . i)
Note: The ans variable is created automatically when no output ar-

gument is specified. It can be used in subsequent operations.

A=
1 2
3 4 2.4.2 Basic matrix operations
5 6 + - | Addition and subtraction
Multiplication
> B=A(:) / Right division
- Exponentiation
B 1 E.g., consider the vectors a and b and a scalar i:
3
5 > a=1:5;
2 > b=[6:10]"7;
4 > i=3;
6

2 MATLAB BASICS

The vector d and the matrix F are given by:

> d=a+ixa

d =
4 8 12 16 20

> E=b*a

E =

6 12 18 24 30
7 14 21 28 35
8 16 24 32 40
9 18 27 36 45
10 20 30 40 50

What, if the matrices involved in the operation are of incompatible
sizes? Not surprisingly, Matlab will complain with a statement such as:

> E=axd
7?7?77 Error using ==> %
Matrix dimensions must agree.

2.4.3 Array operators

To indicate an array (element-by-element) operation, precede a standard
operator with a period (dot). Matlab array operations include multipli-
cation (.*), division (./) and exponentiation (."). (Array addition and
subtraction are not needed and, in fact, are not allowed, since they would
simply duplicate the operations of matrix addition and subtraction.) Thus,
the “dot product” of z and y is

> x=[1 2 3];
> y=[4 5 6];
> X.Xy

ans =
4 10 18

You may divide all the elements in one matrix by the corresponding
elements in another, producing a matrix of the same size, as in:
C=A./B

In each case, one of the operands may be a scalar. This proves handy when
you wish to raise all elements in a matrix to a power. For example:

X =
1 2 3
> X.72
ans =
1 4 9

Similarly, you can raise each element to a different power

1 2 3
z=
2 3 2
> X.7z
ans =
1 8 9

2.5 Relational and logical operators

Matlab relational operators can be used to compare two arrays of the same
size or to compare an array to a scalar. In the second case, the scalar is
compared with all elements of the array, and the result has the same size
as the array.

< > Less (greater) than

<= >= | Less (greater) than or equal to
== Equal to

~ = Not equal to

Let us consider the following matrix G. The command G<=2 finds el-
ements of G that are less or equal 2. The resulting matrix contains

2 MATLAB BASICS

elements set to logical true (1), where the relation is true, and elements set
to logical (0), where it is not.

> G=[1 2;3 4];

> T=G<=2
T =
1 1
0 o Suppose we want to select the elements that are greater

or equal to 5 in the matrix A on page 5 and store them in vector B.
We do this in two steps. Firstly, we tell Matlab to create a 5-by-5
matrix which contains 1, if an element in A is greater or equal than 5
and 0 otherwise. Secondly, we tell Matlab to collect all the elements of
A in a row vector, for which we got a logical true (1) answer in the first step.

> B=A(A>=5)

B =

a0 oo oo

Logical operators provide a way to combine or negate relational ex-
pressions. Matlab logical operators include:

& AND
| OR
~ NOT

An example is:

> T=~(G<=2)
T =

0O O

1 1

Suppose you want to find the location of the elements in a matrix that sat-

isfy a particular condition. Consider matrix A. You want to know whether
it has any elements that are greater than 2 but less or equal to 4 as well as
their location i,j. The instruction

t = A <= 4&A > 2 generates a matrix t of the same size as A with ones
where the condition is satisfied. Alternatively, and more usefully, you can
use find to locate the indexes of such elements:

[i,j] = find(A <= 4&A > 2); [ij]

2.6 Building special matrices
2.6.1 Declaring a zero (or Null) matrix

zeros(n) returns an n-by-n matrix of zeros. An error message appears if
n is not a scalar. zeros(m,n) or zeros([m nl]) returns an m-by-n matrix
of zeros. Thus,

> D=zeros(2,3)

D =

o O
o O
o O

2.6.2 Declaring a ones matrix

> E=ones(2,3)

2.6.3 Declaring an identity matrix

> F=eye(3)

F =
1 0 O
0 1 0
0 0 1

2 MATLAB BASICS

2.6.4 Declaring a random matrix

The rand function generates arrays of random numbers, whose elements
are uniformly distributed in the interval (0,1).

> R=rand(5,1)

R =
0.6154
0.7919
0.9218
0.7382
0.1763

The randn function generates arrays of random numbers, whose ele-
ments are normally distributed with mean 0 and variance 1.

> N=randn(2,3)
N =

-0.4326 0.1253 -1.1465
-1.6656 0.2877 1.1909

2.7 More built-in functions
The type of commands used to build special matrices are called built-in

functions. There is a large number of built-in functions in Matlab. Apart
from those mentioned above, the following are particularly useful:

2.7.1 Display text or array

disp(X) displays an array, without printing the array name. If X contains
a text string, the string is displayed.

> disp(’ Corn Oats Hay’)
Corn Dats Hay

2.7.2 Sorting a matrix

sort (A) sorts the elements in ascending order. If A is a matrix, sort(X)
treats the columns of A as vectors, returning sorted columns. E.g.:

> A=[1 2;3 5;4 3]

A =
1 2
3 5
4 3
> sort(A)
ans =
1 2
3 3
4 5

2.7.3 Sizes of each dimension of an array

size(A) returns the sizes of each dimension of matrix A in a vector.
[m,n]=size(A) returns the size of matrix A in variables m and n (recall:
in Matlab, arrays are defined as m-by-n matrices). length(A) returns the

size of the longest dimension of A. E.g.:

> [m,n]=size(A)

> length(A)

ans =
3

2 MATLAB BASICS

2.7.4 Sum of elements of a matrix

If A is a vector, sum(A) returns the sum of the elements. If A is a matrix,
sum(A) treats the columns of A as vectors, returning a row vector of the
sums of each column.

> B=sum(A)

B =
8 10

If A is a vector, cumsum(A) returns a vector containing the cumula-
tive sum of the elements of A. If A is a matrix, cumsum(A) returns a matrix

of the same size as A containing the cumulative sums for each column of A.

> B=cumsum(A)

B =
1 2

7

8 10

2.7.5 Smallest (largest) elements of an array

If A is a matrix, min(A) treats the columns of A as vectors, returning a
row vector containing the minimum element from each column. If A is
a vector, min(A) returns the smallest element in A. max(A) returns the
maximum elements.

> min(A)

10

2.7.6 Descriptive statistics of matrices

mean (X) returns the mean values of the elements along the columns of an
array. std(X) returns the standard deviation using

i=1

1
1 n . 2
std = (n—l Z(xl—x) >
where n is the number of elements in the sample.

For matrices where each row is an observation and each column a
variable cov(X) is the covariance matriz. Likewise, corrcoef (X) returns
a matriz of correlation coefficients calculated from an input matrix whose
rows are observations and whose columns are variables.

2.7.7 Determinant of a matrix

det (A) returns the determinant of the square matrix A.

> A=[4 2;1 3];
> B=det (A)
B =

10

2.7.8 Inverse of a matrix

inv(A) returns the inverse of the square matrix A.
> C=inv(A)

C =
0.3000 -0.2000
-0.1000 0.4000

In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises, when solving the system of linear
equations Az = b. One way to solve this is with x = inv(A)*b. A better
way from both an execution time and numerical accuracy standpoint is to
use the matrix division operator x = A\b.

2 MATLAB BASICS

2.7.9 Eigenvectors and eigenvalues of a matrix

The n-by-n (quadratic) matrix A can often be decomposed into the form
A = PDP !, where D is the matrix of eigenvalues and P is the matrix of
eigenvectors. Consider

A =
0.9500 0.0500
0.2500 0.7000

> [P,D]=eig(A)

P =
0.7604 -0.1684
0.6495 0.9857

0.9927 0
0 0.6573

11

Probably you are just interested in the eigenvalues.

> eig(A)

ans =
0.9927
0.6573

2.8 Getting help
Typing help topic displays help about that particular topic if it exists, e.g.

> help det

shows information about the use of the determinant function. Another way
is to consult the help desk in the Help menu.

3 GRAPHICS

3 Graphics

Matlab can produce both planar plots and 3D plots. The first important
instruction is the c1f instruction that clears the graphic screen.

3.1 Histogram

The instruction hist (x) draws a 10-bin histogram for the data in vector x.
hist(x,c), where c is a vector, draws a histogram using the bins specified
in c. Here is an example:

> ¢=-2.9:0.2:2.9;
> x=randn(5000,1);
> hist(x,c);

3.2 Plotting series versus their index

2D graphs essentially rely on the instruction plot. plot(y) plots the data
in vector y versus its index, i.e.

> y=rand(100,1);
> clf;
> plot(y)

produces the following graph:

12

0.9 H

0.8

0.7

0.6

0.5

0.4~

0.2 i

0.1 1

plot([y x]) plots the two column vectors of the matrix [y x] versus their
index (within the same graph).

3.3 Scatterplots (2D plots)

The general form of the plot instruction is
plot(x,y,S)

where x and y are vectors or matrices and S is a one, two or three character
string specifying colour, marker symbol or line style. plot(x,y,S) plots y
against x, if y and x are vectors. If y and x are matrices, the columns of
y are plotted versus the columns of x in the same graph. If only y or x is
a matrix, the vector is plotted versus the rows or columns of the matrix.
Note that plot(x,[a b],S) and plot(x,a,S,x,b,S), where a and b are
vectors, are alternative ways to create exactly the same scatterplot.

The S string is optional and is made of the following (and more)
characters:

3 GRAPHICS

Line style:

Solid Dashed Dotted line Dash-dot line

Symbol [- | -] : \ - ‘
Colour:

Yellow Red Green Blue Cyan Magenta White Black
Symbol [Y [r [g [b [C [M | w [k|

Marker specifier:

Point Circle Asterisk Cross
Symbol [. | O | * HE

Thus,
> plot(X,Y,’b*’)

plots a blue asterisk at each point of the data set.

Here is an example:

> x=pi*(-1:.01:1);
> y=sin(x);

> clf;

> plot(x,y,’b-");

0.8- b

0.6 b

0.4 B

0.2 4

3.4 Adding titles, labels and grids

You can add titles and labels to your plot, using instructions:

> title(’atitle’) % Obvious
> xlabel(’alabel’) % Label on the x axis
> ylabel(’alabel’) % Label on the y axis

Using grid, you can even add a grid to your plot. E.g.:

> x=pi*(-3:.01:3);

> yl=sin(x);

> y2=cos(x);

> clf;

> plot(x,yl,’b’,x,y2,’r-");
> title(’A nice example?’);
> ylabel(’The functions’);
> xlabel(’The values’);

> grid;

13

3 GRAPHICS

A nice example?

T T T
08 E
06 4
0.4 E
02 9

-02f

-0.4

—06| 4

—08| 4
-1 I I I I I I I I

8 6 -4 -2 0 2 4 6 8

10

i

The functions
o
T
I

The values

3.5 Creating subplots

You can also have many graphs on the screen, using the instruction
subplot (rcn) where r, c, and n, respectively, denotes the number of rows,
columns and the number of the graph:

> x=[-3:.01:3];

> yl=exp(-0.5%x.72)/sqrt(2xpi);

> y2=sin(x);

> y3=cos(x);

> y4=abs(sqrt(x));

> clf;

> subplot(221); % figure 1 out of 4
> plot(x,yl);

> ylabel(’Y1’);

> xlabel(’X’);

> title(’Gaussian’);

> subplot(222); % figure 2 out of 4

>

>

>

>

>

>

>

>

>

>

>

>

>

>

plot(x,y2);

ylabel(’Y2’);

xlabel(’X’);

title(’Sin(X)?);

subplot(223); ¥ figure 3 out of 4
plot(x,y3);

ylabel(’Y3’);

xlabel(’X’);

title(’Cos(X)’);

subplot(224); ¥ figure 4 out of 4
plot(x,y4);

ylabel(’Y4’);

xlabel(’X’);
title(’Abs(Sqrt (X)) ’);

Gaussian Sin(X)

0.4 1
0.3 0.5
¥ 0.2 NI
0.1 -0.5
-1

-4 -2 0 2 4 -4 -2 0

X X

Cos(X) Abs(Sqrt(X))

1 2
0.5 15
L o0 ¥ o1
-0.5 0.5
1 0

-4 -2 0 2 4 -4 -2 0

14

3 GRAPHICS

3.6 3D plots

The plot command from the two-dimensional world can be extended
into three dimensions with plot3. The format is the same as the two-
dimensional plot, except the data are in triples rather than in pairs. The
generalized format of plot3 is plot3(xi,y1,21,S1, X2, V2,22, Sa, . . .), where
Xn, ¥n, and z, are vectors or matrices, and S, are optional character strings
specifying colour, marker symbol or line style. Here is an example:

> t=linspace(0,10%pi);
> plot3(sin(t),cos(t),t,’bx’);
> xlabel(’sin(t)’),zlabel(’t’);

Next we consider mesh plots. Matlab defines a mesh surface by the
z-coordinates of points above a rectangular grid in the z-y plane. It forms
a plot by joining adjacent points with straight lines. The result looks
like a fishing net with the knots at the data points. Mesh plots are very
useful for visualizing large matrices or for plotting functions of two variables.

The first step in generating the mesh plot of a function of two variables,
z = f(z,y) , is to generate X and Y matrices consisting of repeated rows
and columns, respectively, over some range of the variables x and y. Matlab
provides the function meshgrid for this purpose. [X,Y]=meshgrid(x,y)
creates a matrix X whose rows are copies of the vector x, and a matrix Y
whose columns are copies of the vector y. This pair of matrices may then
be used to evaluate functions of the two variables using Matlab’s array
mathematics features. Here is an example:

> x=[-7.5:.5:7.5];

> y=X;

> [X,Y]=meshgrid(x,y);
> R=sqrt(X."2+Y."2)+eps;
> Z=sin(R)./R;;

> mesh(X,Y,2);

15

3.7 Save graphs

To save the resulting graph in a file just use the instruction print. Its
general syntax is given by:

print -options name_of _file

To save the graph in a jpg-format you type:
print -djpeg graph.jpg

To save the graph in a ps-format you type:

print -dps graph.eps

4 SCRIPTS AND FUNCTIONS

4 Scripts and functions

Up to now, we were content to input individual commands in the Matlab
command window. For more complex functions or frequently needed se-
quences of instructions this is, however, extremely unsatisfying. Matlab
offers us two possibilities of processing or of automating such sequences
more comfortably: script M-files and function M-files.

4.1 Script M-files

Matlab allows you to place Matlab commands in a simple text file, and then
tell Matlab to open the file and evaluate commands exactly as it would
if you had typed them in the Matlab command window. These files are
called script M-files. The term “script” symbolizes the fact that Matlab
simply reads from “script” found in the file. The term “M-file” recognizes
the fact that script filenames must end with the extension .m. Further, the
name of an M-file has to begin with an alphabetical letter.

To create a script M-file, choose New from the File menu and se-
lect M-file (alternatively you just type edit in the Matlab prompt and
press Enter). This procedure brings up a text editor window, the Matlab
editor/debugger. Let’s type the following sequence of statements in the
editor window:

A=[1 2];
B=[3 4];
C=A+B

This file can be saved as the M-file example.m on your disk by choosing
Save from the File menu. Matlab executes the commands in example.m
when you simply type example in the Matlab command window (provided
there is a file example.m in your working directory or path?).

2Do modify the default adjustments over File/Set Path/Path or by pressing the
button “Path Browser” in the command window toolbar. A third way would be to use
DOS-commands: > dir lists the files in the current directory; > cd prints out the
current directory; > cd.. changes to the directory above the current one

16

> example

The use of scripts is particularly handy when you are coding prob-
lems that consist of a large number of connected and complex indexing
steps. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return
output arguments, any variables that they create remain in the workspace,
to be used in subsequent computations. Moreover, scripts can produce
graphical output using functions like plot.

4.2 Function M-files

A function M-file is similar to a script file in that it is a text file having a .m
extension. As with script M-files, function M-files are created with a text
editor. A function M-file is different from a script file in that a function
communicates with the Matlab workspace only through their variables
passed to it and through the output variables it created. Intermediate
variables within the function do not appear in, or interact with, the Matlab
workspace. Functions operate on variables within their own workspace,
separate from the workspace you access at the Matlab command window.
If we call a function within a code, Matlab will search the work directory
for the name of the invoked M-file, minus its extension.

We have encountered examples of function M-files before. Some built-in
functions, are part of the Matlab core. Although they are very efficient, the
computational details are not readily accessible. Others, are implemented
in M-files. You can see the code and even modify it if you want. Apart
from the function M-files incorporated in the Matlab package, you can
write functions on your own, download them from other users homepages
on the internet or buy them separately in so called toolbozes.

4.2.1 Defining your own function M-files

We add new functions to Matlab’s vocabulary by expressing them in terms
of existing commands and functions. The general syntax for defining a
function is

4 SCRIPTS AND FUNCTIONS

Function[outputl,..]=<name of function>(inputl,..);
% include here the text of your online help!
statements;

The first line of a function M-file defines the M-file as a function
and specifies its name (its file name without the .m extension). The name
of the M-file and the one of the function should be the same. It also defines
its input and output variables.

Next, there is a sequence of comment lines with the text displayed in
response to the help command:

> help <name of function>.

Finally the remainder of the M-file contains Matlab commands that
create the output variables.

Let’s consider an example: We would like to build a function, that gives us
the mean and the standard deviation of a vector. (Suppose we don’t know
that there is a respective built-in function.)

function [mx,stx]=stat(x);

%

% function [mx,stx]=stat(x)

% Computes the mean and standard deviation of a
% vector x

% x: a vector (column or row)

% mx: mean of vector

% stx: standard deviation of vector
%

1x=length(x) ;

mx=sum(x)/1x;
stx=(sum((x-mx)."2)/(1x-1))"(1/2);

The name of the function is stat. The input vector is called x.
Output consists of two respective variables, mx and stx. After every line
that starts with a % there is your text of the online help. What follows next
are some familiar Matlab statements. First we define the scalar 1x as the
length of the input vector. Then we define the scalars mx and stx.

You now want to include and use your new function. For this purpose

17

you change to the command window. Suppose, your input is a 1-by-100
random vector.

> x=randn(1,100);
> [mx,stx]=stat(x)

mx =
0.0407

stx =
0.8797

You get the variables mx and stx as an output.

A common problem in dynamic economic models involves the computa-
tion of the steady state of the model. This can be accomplished using the
fcsolve routine that solves non linear systems of equations. For example
in the standard growth model, you will have to solve the system

1 = Bladk® ' +1-9) (1)
ok = Ak® —c (2)

Then you will create a function of 2 variables, let’s call it steady, in a
file steady.m :

function z=steady(x,param);
k=x(1);
c=x(2);
z=zeros(2,1); % Initialization of =z.

z(1)=1-betax(alpha*Axk~ (alpha-1)+1-\delta); 7% Note that the function is
z(2)=delta*k-(Axk~alpha-c); % written as f(x)=0

and then create a script file in which you define an initial condition as
well as parameter values for the fcsolve algorithm and then call fcsolve :

Define parameter values
alpha=0.35; beta=0.99; delta=0.025; A=1; param=[alpha beta delta Al;

Give the initial guess of k and c, kO, cO
$k0=10; c0=1; x0=[k0; cO0];

sol=fcsolve(’steady’,x0, [],param);

5 CONTROLLING THE FLOW

4.2.2 Downloading and using function M-files from the internet

Instead of writing a function on your own, you can download required M-
files (e.g., an algorithm or an estimation procedure etc.) from the internet.
You will probably find it convenient to create your own library of tools that
you will use often.

4.2.3 Toolboxes

Finally, function M-files can be part of a so-called toolbox. A toolbox is
a collection of function M-files that extend the capability of Matlab. In
addition to the toolboxes installed by default,® toolboxes to specific topics
(like statistics or optimization) can be bought separately.

3In your Matlab folder you will find a folder called toolbox. By default it contains
three toolboxes: local, matlab and tour.

18

5 Controlling the flow

The structure of the sequences of instructions used so far was rather
straightforward; commands were executed one after the other, running
from top to bottom. Like any computer programming language and
programmable calculators Matlab offers, however, features that allow you
to control the flow of command execution. If you have used these features
before, this section will be familiar to you. On the other hand, if controlling
the flow is new to you, this material may seem complicated at first; if this
is the case, take it slow.

Controlling the flow is extremely powerful, since it lets past compu-
tations influence future operations. With the three following sets of
instruction it is possible to cope with almost all the problems we shall
encounter in computation. Because they often encompass numerous Matlab
commands, they frequently appear in M-files, rather than being typed
directly at the Matlab command window.

5.1 The FOR-loop

The most common use of a FOR-loop arises when a set of statements is
to be repeated a fixed number of times n. The general form of a FOR-loop is:

For variable = expression;
statements;
end;

The variable expression is thereby a row vector of the length n
that is processed element-by-element (in many cases it is the row vector
(1:n)). Statements stands for a sequence of statements to the pro-
gram. The columns of the expression are stored one at a time in the
variable while the following statements, up to the end, are executed.
The individual instructions are generally separated by semicolons, in or-
der to avoid a constant output from section results in the command window.

A simple example of such a loop is:

5 CONTROLLING THE FLOW

for i=1:10;
x(i)=1;

end;

disp(x’)

5.2 The WHILE-loop

In contrast to the FOR-loop, with which the loop will pass through a fixed
number n, WHILE-loops are executed until an abort condition is fulfilled.
Note: You have to care that the abort condition is achieved by the program
in finite time in each case, in order to avoid a continuous loop.

The general syntax for a WHILE loop is the following:

while condition;
statements;
end;

So while the condition is satisfied, the statements will be executed.
Consider the following example:

eps = 1;

while (1+eps) > 1
eps = eps/2;

end;

eps = eps*2

This example shows one way of computing the special Matlab value
eps, which is the smallest number that can be added to 1 such that the
result is greater than 1 using finite precision. (We use uppercase EPS so
that the Matlab value eps is not overwritten.) In this example, EPS starts
at 1. As long as (1+EPS)>1 is True (nonzero), the commands inside the
WHILE loop are evaluated. Since EPS is continually divided in two, EPS
eventually gets so small that adding EPS to 1 is no longer greater than 1.
(Recall that this happens because a computer uses a fixed number of digits
to represent numbers. Matlab uses 16 digits, so you would expect EPS to
be near 1071¢.) At this point, (1+EPS)>1 is False (zero) and the WHILE
loop terminates. Finally, EPS is multiplied by 2, because the last division
by 2 made it too small by a factor of two.

19

5.3 The IF-statement

A third possibility of controlling the flow in Matlab is called the IF-
statement. The IF-statement executes a set of instructions if a condition
is satisfied. The general form is

if condition 1;
% commands if condition 1 is TRUE
statements 1;
elseif condition 2;
% commands if condition 2 is TRUE
statement 2;
else;
% commands if condition 1 and 2 are both FALSE
statements 3;
end;

The last set of commands is executed if both condition 1 and 2 are
false (i.e., not true). When you have just two conditions you skip the
elseif condition and immediately go to else. An example should make
the point clearer. Assume you have a demand function of the kind

0 iftp>2
D(P)={ 1-05P ifl1<p<2
2P~2 otherwise

The code will be:
P=input(’enter a price :’); % displays the message

% ?.° on the screen and
% waits for an answer

if P>=2;

D=0; % statement 1
elseif (P>=1)&(P<2);

D=1-0.5%P; % statement 2
else; % otherwise

D=2%P~ (-2); % statement 3
end;

disp(D);

6 IMPORTING AND EXPORTING DATA

5.4 How to break a FOR or WHILE-loop
break terminates the execution of a for FOR- or WHILE-loop.

20

6 Importing and exporting data

With Matlab you can both export your data or calculated results and import
external data.

6.1 The diary command

The diary command creates a log of keyboard input and the resulting
output (except it does not include graphics). The log is saved as an ASCII
text file in the current directory or folder. For instance let’s type the
following statements:

> diary result.out;
> disp(A);
»> diary off;

In our directory appears a file named “result” with the extension
.out. We can open it in any editor. It contains the (string or numeric)
matrix A.

Note: The instruction diary does not overwrite an existing file. We

have to delete it first with delete <afile> if we do mot want to add
information on the existing file but overwrite it.

6.2 Save workspace variables on disk

The Save workspace as... menu item in the File menu opens a standard
file dialog box for saving all current variables. Saving variables does not
delete them from the Matlab workspace. Besides, Matlab provides the
command save.

> save

stores the workspace in Matlab binary format in the file matlab.mat.

> save data

saves the workspace in Matlab binary format in the file data.mat.

6 IMPORTING AND EXPORTING DATA

> save capital capital

saves the variable capital in Matlab binary format in the file capi-
tal.mat.

> save capital capital -ascii
saves the variable capital in 8-digit ASCII text format in the file

capital.tzt. ASCII-formatted files may be edited using any common text
editor.

6.3 Retrieving data and results

The load command uses the same syntax, with the obvious difference of
loading variables into the Matlab workspace.

For example assume the data file, data.txt, takes the form:

..... 1.0000 —>.....2.0000 §
..... 3.0000 —>.....4.0000 §
..... 5.0000 —>.....6.0000 §

We make sure that data.txt is in the right directory and then type
load data.txt -ascii;

Our data are stored in a matrix called data that we will manipulate
as any other matrix.

If our data is stored in an FEzxcel spreadsheet then there is an even
lazier way to import data. We highlight the data to be imported in the
Excel spreadsheet, copy them, swap to the Matlab prompt, define a matrix
(e.g. data=), open the angular brackets and then paste the data. Finally
we close the brackets. We end up with a matrix called data containing our
data.

6.4 Request user input

If we want the user to input information from the keyboard we use the
statement input:

21

n=input(’Give a number’);

displays the message “Give a number” on the screen and wait for an
answer. The result will be evaluated in the variable n.

References

[1] FEinfihrung in Matlab. University of Munich
http://www.stat.uni-muenchen.de/~boehme/matlab-
kurs/lecturel.html

[2] Noisser, Robert (1998). Matlab Einfiihrung. University of Vienna
http://www.iert.tuwien.ac.at/support/matlab_1.htm

[3] Sigmon, Kermit (1992). Matlab Primer 2nd edition. Department of
Mathematics, University of Florida

[4] The Student Edition of MATLAB. Version 5, User’s Guide (1997)

