Session 7: Introduction to Matlab 2 - Scripts and Loops

Doing Economics with the Computer

1 The Topic

Today's objective is to develop your Matlab skills along two dimensions: Writing script files and controlling the flow (the for, if, while commands).

1.1 Script M-files

Example 1: Open a new M-File, write disp('hello world'); save the file as example1.m and run it from the Matlab prompt by typing example1.
Example 2: Write and run the following script M-file: $\mathrm{a}=\left[\begin{array}{ll}12] ; \mathrm{b}=[3\end{array}\right.$ 4]; $c=a+b$. Type the name of the variables a, b, c in the Matlab prompt and see what happens.
Example 3: Add comments to the above script: $\mathrm{a}=\left[\begin{array}{ll}12\end{array}\right] ; \mathrm{b}=\left[\begin{array}{ll}3 & 4\end{array}\right] ; \mathrm{c}=$ $a+b$

1.2 Controlling the flow

1.2.1 The for loop

Example 4: for $\mathrm{i}=1: 10 ; \operatorname{disp}(\mathrm{i})$; end;
Example 5: for $\mathrm{i}=1: 10 ; \mathrm{x}(\mathrm{i})=2^{i}$; end; x
Example 6: for $\mathrm{i}=1: 10 ; \mathrm{x}(\mathrm{i})=i^{2}$; end; x
Example 7: $\mathrm{A}=$ zeros $(5,5)$; for $\mathrm{i}=1: 5$; for $\mathrm{j}=1: 5 ; \mathrm{A}(\mathrm{i}, \mathrm{j})=i^{j}$; end; end; A
Example 8: for $\mathrm{i}=1: 2: 9$; disp(i); end;
Example 9: $\mathrm{x}=\operatorname{zeros}(10,1)$; for $\mathrm{i}=\left[\begin{array}{ll}246810\end{array}\right] ; \mathrm{x}(\mathrm{i})=2^{i}$; end; x ;

Exercise 1: Geometric series

Consider the geometric series $x(n)=q^{n-1}, n=1,2, \ldots$.
a) Calculate the values of the geometric series for $n=1: 10, q=0.5$ and store the results in a vector S1
b) Compute the sum $s(n)=1+q+q^{2}+q^{3}+\cdots+q^{n-1}$ for $\mathrm{q}=0.5$ and $\mathrm{n}=10$.
c) Store the values of the geometric series for $\mathrm{n}=1: 10$ and $\mathrm{q}=0.2$ in the first row of a matrix S. Store the values for $q=0.5$ and $q=0.8$ in rows 2 and 3.

Exercise 2: Difference equations

Let $y_{t+1}=f * y_{t}+w_{t+1}$. Assume that $\mathrm{f}=0.7, y_{1}=1.5$ and $w_{t}=0$ for all periods t .
a) Generate the time path of y for $\mathrm{t}=1,2, \ldots, 20$ using a for loop. Plot the time path of y . What happens if $\mathrm{f}=1$?
b) Consider a temporary change in w: $w_{2}=1$. How is the time path of y affected? Compute and plot the impulse response function.
c) Consider a permanent change in $\mathrm{w}: w_{t}=1$ for $\mathrm{t}=2,3, .$. How is the time path of y affected? Compute and plot the immediate and future effects.
d) Let's assume that w_{t} is a stochastic variable, a normally distributed random variable: $w_{t} \mathrm{~N}\left(0, s^{2}=0.1\right)$. Generate a sequence w_{t} for $\mathrm{t}=2, .$. , 20. Compute and plot the time path of y . Compare this to the time path under (a).
e) Consider the non-linear stochastic difference equation $y_{t+1}=w_{t} * y_{t}^{m}+k$ where w is a random number from a uniform distribution. Let $m=0.5, y_{1}=$ 2 and $k=1$. Suppose that when $t=10, \mathrm{k}$ becomes 2 and remains at this level thereafter. Plot the path of the difference equation over 50 periods.

1.2.2 The if statement

Example 10: $\mathrm{a}=4 ; \mathrm{b}=3$; if $\mathrm{a}>\mathrm{b}$; disp('a is bigger than b '); end;
Example 11: $\mathrm{a}=2 ; \mathrm{b}=3$; if $\mathrm{a}>\mathrm{b}$; disp('a is bigger than b '); else; disp('a is smaller or equal to b^{\prime}); end;
Example 12: $\mathrm{a}=2 ; \mathrm{b}=3$; if $\mathrm{a}>\mathrm{b}$; $\operatorname{disp}(' \mathrm{a}$ is bigger than b '); elseif $\mathrm{a}==\mathrm{b}$; $\operatorname{disp}\left(\right.$ ' a is equal to b^{\prime}); else; disp('a is smaller than b'); end;
Example 13: $\mathrm{a}=2 ; \mathrm{b}=3 ; \mathrm{c}=3$;
if $(a<b) \&(b \sim=c)$; disp('a is smaller than b and b is not equal to c^{\prime} '); end;
Example 14: $x(1)=1$; for $\mathrm{i}=1: 1000 ; x(i+1)=x(i) * 2$; if $x(i+1)>100$; break; end; end; x

Exercise 3: An (almost)infinite geometric series.

Calculate the sum of a geometric series $s(n)=1+q+q^{2}+q^{3}+\cdots+q^{n-1}$ for $\mathrm{q}=0.5$ and $n \rightarrow \infty$ using a for loop. Stop the loop when the value of $\mathrm{s}(\mathrm{n})$ equals approximately $\mathrm{s}(\mathrm{n}-1)$. Example 14 may give you an idea of how to do this.

Exercise 4: The solution to a difference equation.

The difference equation $y_{t+1}=f * y_{t}+w_{t+1}$ converges towards a certain value when w is a constant and $-1<f<1$. Calculate this value when $y_{1}=1, w=1$ using a for loop (terminate the loop when the value of y_{t} no longer changes.

1.2.3 The while loop

Example 15: $\mathrm{i}=0$; while $\mathrm{i}<=9 ; \mathrm{i}=\mathrm{i}+1 ; \operatorname{disp}(\mathrm{i})$; end;
Example 16: $\mathrm{x}=1$; while $x<=100 ; \mathrm{x}=\mathrm{x}^{*} 2$; end; x

Exercise 5: Redo exercise 4 using a while loop in order to get the value at which the change in successive values of the difference equation is "negligible". Example 16 may help.

2 Homework

Exercises 2c, 2e, $4 .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ Note that this homework is not part of the 6 assignments

