Session: Portfolio Selection in a Nutshell

Jürg Adamek*

1 The Topic

The financial markets of developed economies provide countless opportunities to investors. As a consequence, when making an investment we have to decide what amount we want to spend on which asset, i.e. we have to select the mixture of assets (a so called portfolio) which is optimal for us. Optimality thereby usually means that we wish to earn the highest possible amount of money at the lowest possible risk. In other words: given a certain return we want to minimize the corresponding risk, or given a specific risk we want to earn the maximum return possible.

2 Definitions and Statistical Concepts: Portfolio

A portfolio is a blend of various assets. In other words, when putting together a portfolio, we attach a weight $w_{i} \in[0,1]$ to each asset i (Note that we do not allow for negative weights, i.e. short positions.) Of course

[^0]the sum of these weights has to add up to 1, i.e. $\sum_{i=1}^{N} w_{i}=1$. Given our assumption that the returns of all assets R are normally distributed, we can then calculate the expected return and risk for the portfolio. ${ }^{1}$
For the expected return of the portfolio, μ_{P}, the computation is rather easy (provided that we know the expected returns and corresponding variance, μ and Σ, and w).
\[

$$
\begin{equation*}
\mu_{P}=\sum_{i=1}^{n} w_{i} \mu_{i} \tag{1}
\end{equation*}
$$

\]

w_{i} is the weight of asset i in the portfolio, μ_{i} is the expected return of asset i and n is the total no. of assets in the portfolio.
For risk, however, things are a little more complicated. The reason why

[^1]is that, in general, the variance of a sum is not the sum of the variances; only if summands are not correlated with each other, this will be the case. Thus, for a portfolio of assets, variance σ_{P}^{2} and standard deviation σ_{P} are generally defined as
\[

$$
\begin{align*}
\sigma_{P}^{2} & =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1, i \neq j}^{n} w_{i} \cdot w_{j} \cdot \sigma_{i j} \tag{2}\\
\sigma_{P} & =\sqrt{\sigma_{P}^{2}} \tag{3}
\end{align*}
$$
\]

where σ_{i}^{2} is the variance of the expected return of asset i and $\sigma_{i j}$ is the covariance between the return of assets i and j.
Note that we could have stated equation 2 equivalently as

$$
\sigma_{P}^{2}=\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1, i \neq j}^{n} w_{i} \cdot w_{j} \cdot \rho_{i j} \cdot \sigma_{i} \cdot \sigma_{j}
$$

where $\rho_{i j}$ is the correlation coefficient between assets i and j. This equivalence stems from the fact that $\rho_{i j}$ is defined as

$$
\begin{equation*}
\rho_{i j}=\frac{\sigma_{i j}}{\sigma_{i} \cdot \sigma_{j}} \tag{4}
\end{equation*}
$$

Examples:

For a portfolio of 2 assets, expected return μ_{P} and risk σ_{P} (defined as standard deviation) are

$$
\begin{aligned}
\mu_{P} & =w_{1} \mu_{1}+w_{2} \mu_{2} \\
\sigma_{P} & =\left(w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \sigma_{12}\right)^{\frac{1}{2}} \\
& =\left(w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \sigma_{1} \sigma_{2} \rho_{12}\right)^{\frac{1}{2}}
\end{aligned}
$$

For a portfolio of 3 assets, we have

$$
\begin{align*}
\mu_{P}= & w_{1} \mu_{1}+w_{2} \mu_{2}+w_{3} \mu_{3} \tag{7}\\
\sigma_{P}= & \left(w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+w_{3}^{2} \sigma_{3}^{2}+\ldots\right. \tag{8}\\
& \left.\cdots+2 w_{1} w_{2} \sigma_{12}+2 w_{1} w_{3} \sigma_{13}+2 w_{2} w_{3} \sigma_{23}\right)^{\frac{1}{2}} \\
= & \left(w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+w_{3}^{2} \sigma_{3}^{2}+\ldots\right. \\
& \left.\cdots+2 w_{1} w_{2} \sigma_{1} \sigma_{2} \rho_{12}+2 w_{1} w_{3} \sigma_{1} \sigma_{3} \rho_{13}+2 w_{2} w_{3} \sigma_{2} \sigma_{3} \rho_{23}\right)^{\frac{1}{2}}
\end{align*}
$$

3 References

Loderer, C., P. Jörg, K. Pichler, L. Roth and P. Zgraggen (2002) Handbuch der Bewertung. 2. erweiterte Auflage. Zürich: Verlag NZZ

Hogg, R.V., J.W. McKean and A.T. Craig (2005) Introduction to Mathematical Statistics. Sixth edition. Upper Saddle River, NJ: Pearson Prentice Hall

4 Task

Exercises

You are given the following data on return, risk (i.e. standard deviation) and correlations of the assets A, B and C :

	A	B	C
Return	22.5000%	11.0000%	18.1000%
Risk	22.16416%	17.578396%	15.1225%

Correlations	A	B	C
A	1.0000	-0.4787	-0.7107
B	-0.4787	1.0000	-0.2774
C	-0.7107	-0.2774	1.0000

1. Which asset is inefficient? It might be useful to plot the three assets in a graph in order to determine this.
2. Compute the covariance matrix for the three assets, using equation (4).
3. By varying the weights of A and C in a portfolio that only consists of these two assets, find the corresponding values for return and risk. You may want to do so, by writing a table of the form

Weight A	Weight C	Return	Risk
1.0	0.0	$\ldots \%$	$\ldots \%$
0.9	0.1	$\ldots \%$	$\ldots \%$
\vdots	\vdots	\vdots	\vdots

Apply equation (5) in the third- and equation (6) in the fourth column. Make sure that the weights sum up to 1 .
4. Plot the risk-return combinations that you obtained in exercise 3. What do you find?
5. Compute the minimum risk portfolio by varying the weights for A and C. Again, use equations (5) and (6) for return and risk. In carrying out the minimization, you might want to use Excel solver. Take the following constraints into account: The weights of both assets must be larger than 0 and smaller than 1 . In addition, the weights have to sum up to 1 .
6. Carry out the same minimization, but this time also include asset B in the portfolio. Consequently, equations (7) and (8) are needed to compute return and risk. Compare the resulting return and risk to the minimum risk portfolio you found in 5 .

[^0]: *Slightly rearranged by Guido Baldi

[^1]: ${ }^{1}$ Doing so, we have to take into account the following fact from the theory of the multivariate normal distribution:(see e.g. Hogg et al. (2005), p. 173.)
 Suppose that the returns of the n assets, R, have the distribution $R \sim N_{n}(\mu, \Sigma)$ (where μ is the $n \times 1$ vector of means and Σ is the $n \times n$ variance-covariance matrix.) Now let $P=w R$ where w is a $1 \times n$ vector of weights, i.e. $w=\left(\begin{array}{lll}w_{1} & \ldots & w_{n}\end{array}\right)$. Then $P \sim N\left(w \mu, w \Sigma w^{\prime}\right)$, where $w \mu$ and $w \Sigma w^{\prime}$ are scalars.
 For the present case this means that if the returns have a multivariate normal distribution, the portfolio P has a univariate normal distribution with mean $w \mu$ and variancecovariance matrix $w \Sigma w^{\prime}$.

