
Session 10: Numerical Optimization

Fabrice Collard and Philipp Wegmueller

In today’s session we want to learn how Matlab can be used to perform

numerical optimization.1 One of the most basic numerical problems en-

countered in computational economics is to find the solution of a system

of (potentially nonlinear) equations. Optimization is an important tool in

decision science and in the analysis of physical systems. To use it, we must

first identify some objective, a quantitative measure of the performance of

the system under study. This objective could be utility, profit, time, or

any quantity or combination of quantities that can be represented by a sin-

gle number. The objective depends on certain characteristics of the system,

called variables or unknowns. Our goal is to find values of the variables that

optimize the objective. Often the variables are restricted, or constrained,

in some way. Once the model has been formulated, an optimization algo-

rithm can be used to find its solution. Usually, the algorithm and model are

complicated enough that a computer is needed to implement this process.

The aims of today are:

a) Set up successfully a grid search problem.
b) Apply minimization functions to perform numerical optimization.
1See Numerical optimization (1999)byWright, SJ; or Numerical methods in economics

(1998) by Judd, K.

1 Optimization

The most general optimization problem minimizes an objective function, f ,

subject to equality (g) and inequality constraints (h). We examine mini-

mization problems, since maximizing f is the same as minimizing −f . Most

optimization software is geared for minimization, so we need to get used to

transforming maximization problems problems into minimization problems.

min
x

f(x)

s.t. g(x) = 0

h(x) ≤ 0,

There exists a number of optimization methods. All of them search through

the space of feasible choices, generating a sequence of guesses that should

converge to the true solution. Methods differ in the kind of information they

use. The simplest methods compute the objective and constraint functions

at several points and pick the feasible point yielding the largest value.

1

Session 10: Numerical Optimization 2

1.1 Grid search

Consider as a first example that you are given the following polynomial

function:

f(x) = x2 + 3x− 10,

which gives rise to the following parabola:

−5 0 5
−20

−10

0

10

20

30

f(x)=x
2
+3x−10

Figure 1: Finding the minimum of the function

Your task is to find the minimum of this function. The most primitive

procedure to minimize a function is to specify a grid of points, say, between

100 and 1000 points, evaluate f(x) at these points, and pick the minimum.

The grid search method is usually the first step in numerical optimization

and serves as an indicator of the results.

In Matlab we can use the command y = linspace(a,b,n) to generate a

linearly spaced vector of n points between a and b.

1.2 Numerical optimizers

In a second step you shall numerically find the roots of the function, that

is you want to solve

min
x

f(x) = x2 + 3x− 10

s.t. f(x) = 0.

All optimization problems can be stated in such a way that they have a

zero on the left hand side of the equation. Then, the problem of solving the

equation amounts to finding the values of x which yield f(x) = 0. This will

be useful for steady state calculations (Session 12 of this course) or trans-

formation of time series, etc. Matlab provides several solution algorithms

to do this task.

fzero Can be used to solve a single equation numerically for a single vari-

able. The solution can be found iteratively with the single statement:

[x opt1, fval, exitflag]=fzero(@(x) (x.2 +3.*x-10),-3);

Where -3 is the initial guess and the function returns the solution -5.

The other solution is found using an initial guess of +3. The @-syntax

is used to pass an anonymous function to the fzero function (it is a

so-called function handle, which indicates, for which variable in the

following equation it should be solved). In this case, it is the complete

objective function, and the (x) preceding the function tells matlab that

x is the variable to be adjusted. In this case, x is the only variable in

the function. To constrain the search interval, a vector with bounds

can be used for the second argument, such as [3, 1]. The response of

Session 10: Numerical Optimization 3

the objective function value is stored in fval, and the exit condition

exitflag is 1 on a successful solution.

Alternatively you could write also

myfun = @(x) (x.2 +3.*x-10)

[x opt1, fval, exitflag]=fzero(myfun,-3);

fsolve (Only comes with the Optimization Toolbox – Check on your work-

station) Should be used to solve systems of nonlinear equations. How-

ever, it does not allow you to include any constraints, even bound

constraints. Suppose you have two equations:

0 = 2x− y − e−x

0 = −x+ 2y − e−y

To solve this problem specify a function myfun with a handle, that

reads like

myfun = @(x) [2*x(1)-x(2)-exp(-x(1));

-x(1)+2*x(2)-exp(-x(2))];

Then you make a starting guess, for instance x0 = [-5 -5] and use

the function

[x opt1, fval, exitflag]=fsolve(myfun,x0,[options])

where in [options] you could specify different options for the solution

algorithm.

fminbnd Finds a minimum of single-variable function on a fixed interval,

and should be used when there are bounded constraints:

min
x
f(x) s.t. x1 < a < x2

Then the syntax is as follows:

[x opt1, fval, exitflag]=fminbnd(myfun,x1,x2) returns a value

x opt1 that is a local minimizer of the scalar valued function that is

described in myfun in the interval x 1 ≤ x ≤ x 2.

[x opt1,...]=fminbnd(myfun,x1,x2,options,P1,P2,...) provides

for additional arguments, P1, P2, which are passed to the objective

function myfun. Use options=[] as a placeholder if no options are set.

fcsolve Is an extension of fsolve, as it is possible to add constraints to

the optimization. The function reads similarly to the previous ones:

[x,rc] = fcsolve(myfun,x0,option,P1,P2,.....)

Note that generally these optimizers allow for different types of inputs

for the function which shall be evaluated. For instance take the fminbnd

function: Function arguments contains general descriptions of arguments

passed in to fminbnd. Suppose myfun is the function to be minimized, it

accepts a scalar x and returns a scalar f, that is the objective function f(x)

evaluated at x. The function myfun can be specified in two ways:

As handle: x = fminbnd(@myfun,x1,x2), where we have function f =

myfun(x) and inside the function a line which says f = ..., where

f(x) is evaluated at x.

As object: x = fminbnd(’myfun’,x1,x2);, where ’myfun’ is a

string containing the name of the function. For example,

fminbnd(’cos’,0,4) returns the value 3.14.

Session 10: Numerical Optimization 4

We can only touch upon the issues of numerical optimization and

there are many intricacies involved. A good starting point is often the

Matlab help, which provides good guidance on which algorithm/solver

to use for the problem at hand. In general, functions differ whether your

problem i) is nonlinear, ii) differentiable, iii) is univariate or multivariate,

iv) involves solving or minimizing a function, and/or iv) features constraints.

Exercise 1: Function optimization *

1. Plot the following polynomial function in a range of x ∈ [−2.5; 2.5].

f(x) = x3 − x2 − 3x.

2. Use the fsolve function to find the roots of this polynomial.

3. Find the local maxima and minima (if any) of this polynomial func-

tion (within the range specified) using the function the fminbnd. Use

the roots to define appropriate bounds.

4. Consider the following function f(x):

f(x) =

(
2x− x2

2
− x2

0.02 + x2

)
.

Use the fzero function to find the roots of f(x) Compare your results

by plotting the function in the range 0 ≤ x ≤ 5.

5. Consider the following equation system:

f(1) = x21 + x22 − 2

f(2) = x1x2 − 1

Use the fsolve function to solve for x1 and x2. Take as initial guess

x 0 = [10 10].

Exercise 2: Utility Maximization **

Consider (standard) the problem of a household who decides on her con-

sumption plans so as to maximize her utility function subject to the budget

constraint

max
c1,c2

cα1 c
1−α
2

p1c1 + p2c2 = I

c1, c2 ≥ 0

where I is the income of the household, p1 and p2 are the prices of each

goods. In the first place, we set I = 10, p1 = 1, p2 = 2 and α = 0.5.

1. Set a grid of values for c1 (you will have to think about the relevant

bounds for the grid) using 10’000 points in the grid, and evaluate

the utility function at each point of the grid using Matlab. Find the

maximal value of the utility function and the optimal consumption

plan. (Hint: Use the max function to find the maximum value in a

vector.)

2. Setup a function that evaluates the utility function, the same way

you did it in the first question, and which passes as argument c1, and

the vector of parameters (I, p1, p2, α). Repeat Question 1 using this

function.

3. Use the previous function and the function fminbnd to obtain the op-

timal consumption plan. (Hint: Be careful, you may have to modify a

bit the function you obtain in Question 2, think of the minimization

Session 10: Numerical Optimization 5

problem.)

4. Write the first order conditions to the problem on a piece of paper.

Then set up a Matlab file that evaluates these first order conditions.

This function will have as arguments c1 and c2, and as vector of

parameters (I, p1, p2, α).

Hint: Use the function fcsolve to solve this optimization problem.

This function solves for (@)FUN(x,P1,P2,...)=0. Maybe you need

to use a function handle (@). Search the Matlab documentation on

how to use a handle if you need more help.

5. Assume now that the income of the agents varies from 1 to 20 (take

20 values), use the approach of Question 4, to obtain the optimal

consumption decisions for each level of income. Plot the consumption

functions as a function of income.

6. Repeat the last question with p1, for p1 between 0.5 and 1.5 (20

values)

Exercise 3: Utility Maximization - CES utility ***

Repeat Exercise 1 with the following utility function

u(c1, c2) =

(
αc

ρ−1
ρ

1 + (1− α)c
ρ−1
ρ

2

) ρ
ρ−1

Also study the effect of variations in rho (between 0.5 and 1.5) on optimal

consumption.

	Optimization
	Grid search
	Numerical optimizers

