Introduction to Matlab, Version 6.0.0

Harris Dellas Kurt Schmidheiny Manuel Wälti

Winter Term 2004

Contents

1 Introduction 1
2 Matrix construction and manipulation 2
2.1 Building a matrix 2
2.2 Basic manipulations 3
2.3 Some useful functions 6
3 Controlling the flow 8
3.1 The FOR-loop 8
3.2 The WHILE-loop 9
3.3 The IF-statement 9
4 Input-Output tools 10
4.1 Input - output of texts 10
5 Graphics 11
5.1 Histogram 11
5.2 Plots 11
5.3 3D plots 14
6 Scripts and functions 14
6.1 Script M-files 14
6.2 Function M-files 15
References I

1 Introduction

This short note aims at introducing you to the basics of Matlab.

Preliminaries

In what follows, typeset letters denote matlab code.
After typing a command you execute it by pressing the enter key. The output generated by your commands is stored in Matlab and can be accessed by simply typing the appropriate name. Issuing the command clear x clears the value of variable x from the memory and clear clears all values that have been created during a matlab session.
To interrupt a running execution, type $\mathrm{Ctrl}+\mathrm{C}$.
In general, when you enter $\gg C$, Matlab does the following: It first checks to see if C is a variable in the Matlab workspace; if not, it checks to see if C is a built-in-function; if not, it checks if an M-file named C.m exists in the current directory; if not, it checks to see if C.m exists anywhere on the Matlab search path, by searching the path in the order in which it is specified. Finally, if Matlab can't find C.m anywhere on the Matlab search path, an error message will appear in the command window.
The command dir provides a list of all files in the directory (or folder) while cd directory-name changes from the current directory to the one specified. cd . . changes the directory to the one above it.

In the appendix you can find explanations for the functions and operations that are not fully described in the text. Alternatively, if you need help, type help for a list of help topics. If you need help regarding a particular command, say, log, type help log.
When Matlab displays numerical results it displays real numbers with four digits to the right of the decimal point. If you want to have more
than four digits displayed issue the command format long. To go back to displaying four digits after the decimal point (the default setting), type format short.

Note also that a ";" at the end of a line tells Matlab not to display the results from the command it executes. Text following $\%$ is interpreted as a comment (plain text) and is not executed. A . . . means that the line does not end at the physical end of the line but rather spills into the next line.

2 Matrix construction and manipulation

In Matlab each variable is a matrix (or rectangular data array). Since a matrix contains m rows and n columns, it is said to be of dimension m-byn. An m-by- 1 or 1 -by- n matrix ist called a vector. A scalar, finally, is a 1-by-1 matrix.
You can give a matrix whatever name you want. Numbers may be included in the names. Matlab is sensitive with respect to the upper or lower case. If a variable has previously been assigned a value, the new value overrides the old one.

2.1 Building a matrix

There are several ways to build a matrix.

- One way to do it is to declare a matrix as if you wrote it by hand

```
>A=[lllll}
4 6]
A =
```

This will produce the matrix
123
456

- Another way is to separate rows with ';'
- A final way is to do it element by element
$\gg C(1,1)=3$;
$\gg C(1,2)=4$;
$\gg C(1,3)=5$;
$\gg C(1,1)=6$;
$\gg C(2,2)=7$;
$\gg C(2,3)=8$;

There are some special matrices that are extremely useful:

- The zero (or Null) matrix: zeros(m,n) creates a m-by- n matrix of zeros. Thus,

```
D=zeros (2,3)
```

produces D =
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$

- The ones matrix: ones (m, n) creates a m-by- n matrix of ones. $>E=o n e s(2,3)$

E =
$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$

- The identity matrix: eye (n) creates a $(n \times n)$ matrix with ones along the diagonal and zeros everywhere else.
$>$ F=eye(3)
$\mathrm{F}=$
100
010
$0 \quad 0 \quad 1$
- You can generate a $(n \times m)$ matrix of random elements using the command $\operatorname{rand}(n, m)$, for uniformly distributed elements, or randn (n, m), for normally distributed elements. That is, rand will draw numbers in $[0 ; 1]$ while randn will draw numbers from a $\mathcal{N}(0,1)$ distribution.
- The empty matrix is useful for initializing a matrix :
$\mathrm{A}=[\mathrm{]}$;
will set A to be an empty matrix.
- A string matrix. A variable in Matlab can be one of two types: numeric or string. A string matrix is like any other, except the elements in it are interpreted as ASCII numbers. To create a string variable, we enclose a string of characters in apostrophes. Since a string variable is in fact a row vector of numbers, it is possible to create a list of strings by creating a matrix in which each row is a separate string. Note: As with all standard matrices, the rows must be of the same length.

```
> x=['ab';'cd']
x =
    ab
    cd
> x=['ab' 'cd']
x =
    abcd
```


2.2 Basic manipulations

You can build matrices out of several submatrices. Suppose you have the matrices A, B, C, D.
$\gg A=\left[\begin{array}{lll}1 & 2 ; 3 & 4\end{array}\right]$;
$\gg B=\left[\begin{array}{llll}5 & 6 & 7 ; 8 & 9 \\ 10\end{array}\right] ;$

$\gg \mathrm{D}=\left[\begin{array}{llll}1 & 2 & 3 ; 4 & 5\end{array}\right]$;

In order to build \boldsymbol{E}, which is given by $\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right]$, you type:
$\gg E=\left[\begin{array}{lll}A & B ; C\end{array}\right]$

E =
$\begin{array}{lllll}1 & 2 & 5 & 6 & 7\end{array}$
$\begin{array}{lllll}3 & 4 & 8 & 9 & 10\end{array}$
$\begin{array}{lllll}3 & 4 & 1 & 2 & 3\end{array}$
$\begin{array}{lllll}5 & 6 & 4 & 5 & 6\end{array}$
Now, suppose you want to extract particular elements from a matrix. Consider the matrix :

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4
\end{array}\right)
$$

Suppose you want to isolate the central matrix :

$$
B=\left(\begin{array}{ll}
2 & 3 \\
3 & 4 \\
4 & 5 \\
5 & 1
\end{array}\right)
$$

All we have to type in matlab is :

$B=A(1: 4,2: 3)$

1:4 means the sequence 1234 and 2:3 the sequence 23 , so that $\mathrm{B}=\mathrm{A}(1: 4,2: 3)$ will just select in A the rows 1234 and columns 2 and 3.

Assume we just want to select columns 1 and 3, but take all the lines. We have to write :
$B=A\left(:,\left[\begin{array}{ll}1 & 3\end{array}\right]\right)$;
The : means select all, while [13 3 3 means select all the elements of the the 1 st and 3 rd column of the matrix.

Deletion Now suppose you want to delete some elements of matrix A.
$A(:, 3)=[]$
This deletes the third column of A.

Replacement

$A(2: 3,1: 2)=\operatorname{zeros}(2)$
replaces the specified elements with zeros. Similarly,
$\mathrm{A}(2,:)=8$
replaces the specified element with 8 .
Vectorization Consider the matrix :

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

And assume that we just want to obtain its vectorization, then we just have to type:
$\mathrm{B}=\mathrm{A}(:)$;
to get :

$$
B=\left(\begin{array}{l}
1 \\
3 \\
5 \\
2 \\
4 \\
6
\end{array}\right)
$$

If we want to obtain the A matrix from B , we just use the reshape command :

A=reshape ($\mathrm{B}, 3,2$)
that means that it will take the B vector and form a matrix (3×2).

Replication

This is how we can replicate a matrix (tile it) horizontally or vertically
$B=r e p m a t(A, 3,2)$
This creates the matrix
A A A
A A A

Transpose

Finally, in order to obtain the transpose of a matrix we just use the ' operator $\mathrm{B}=\mathrm{A}$ ';
Here is a table of some other useful manipulations :

$\operatorname{rot90(A)}$	rotation of A
fliplr(A)	flip matrix left to right
flipud(A)	flip matrix up and down
$\operatorname{diag}(A)$	create or extract the diagonal of A
$\operatorname{diag}(A, i)$	extract the i-th diagonal above the main one of A
$\operatorname{diag}(A,-i)$	extract the i-th diagonal below the main one of A
$\operatorname{tril(A)}$	Lower triangular part of A
$\operatorname{triu}(A)$	Upper triangular part of A

Logical and relational operators

You can also extract (or add) elements from a matrix using logical or relational operators. Suppose that we want to select the elements that are greater or equal to 3 in the matrix and store them in a vector B:

$\mathrm{B}=\mathrm{A}(\mathrm{A}>=3)$

if $A(i, j)>=3$ then it will be stored in vector B .
Now suppose you simply want to know the location of the elements that satisfy a particular property (let as say, equal or greater than 3). The command

$B=A>=3$;

will reproduce the A matrix A but with elements that take the value of 1 (if the condition is satisfied) or 0 (if the condition is not satisfied. That is,

$$
B=\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right)
$$

If you simply want to know the location of the elements that satisfy this condition, you type
$[i, j]=f \operatorname{ind}(A>=3)$;
This can be very handy when you have a very large matrix and you are searching for particular elements.

Other relational operators are

$<$	$>$	Less (greater) than
$<=\quad>=$	Less (greater) than or equal to	
$==$		Equal to
$\sim=$		Not equal to

Logical operators can play a similar role. For instance, suppose you want to extract those elements of A that are not equal to 3 and at the same time they are greater than 4 . This can be accomplished by
$B=A\left(A^{\sim}=3 \& A>4\right) ;$
The logical operators include

$\&$	AND
\mid	OR
\sim	NOT

2.2.1 Basic matrix operations

Arithmetic operations on matrices are straightforward. Some attention need to be paid when doing divisions.

+	-
$*$	Addition and subtraction
$/$	Multiplication
$/$	Right division
	Exponentiation

E.g., consider the vectors a and b and a scalar i :
$\Rightarrow a=1: 5$;
$\gg \mathrm{b}=[6: 10]^{\prime}$;
$\gg \mathrm{i}=3$;
The vector d and the matrix E are given by:
$\gg d=a+i * a$
$\mathrm{d}=$
$\begin{array}{lllll}4 & 8 & 12 & 16 & 20\end{array}$
$\Rightarrow \mathrm{E}=\mathrm{b} * \mathrm{a}$

E =

6	12	18	24	30
7	14	21	28	35
8	16	24	32	40
9	18	27	36	45
10	20	30	40	50

What, if the matrices involved in the operation are of incompatible sizes? Not surprisingly, will not do it statement such as:

```
\(>\mathrm{E}=\mathrm{a} * \mathrm{~d}\)
```

??? Error using ==> *
Matrix dimensions must agree.

Element-by-element operations

To do array (element-by-element) operation rather than matrix operations precede a standard operator with a period (dot). Matlab array operations include multiplication $(. *)$, division (./) and exponentiation $\left(.^{\wedge}\right)$. (Array addition and subtraction are not needed and, in fact, are not allowed, since they would simply duplicate the operations of matrix addition and subtraction.) Thus, the "dot product" of x and y is
$\gg x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$;
$\gg y=\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$;
$\gg \mathrm{x} . * \mathrm{y}$
ans =
$4 \quad 10 \quad 18$

You may divide all the elements in one matrix by the corresponding elements in another, producing a matrix of the same size, as in:
C = A ./ B
In each case, one of the operands may be a scalar. This proves handy when you wish to raise all elements in a matrix to a power. For example:
$\mathrm{x}=$
123
$\gg \mathrm{x} \cdot{ }^{\wedge} 2$
ans =
149

Here is a table of basic operations you can do in Matlab:

Action	Math. equivalent	Matlab	Comment
Size	A is ($r \times c$)	$[\mathrm{r}, \mathrm{c}]=\operatorname{size}(\mathrm{A})$	
Transposition	A^{\prime}	A,	
Addition	$A+B$	A+B	$\operatorname{dim}(A)=\operatorname{dim}(B)$
Product	$A B$	A*B	Compatility
Product element by element	$A_{i j} B_{i j}$	A.*B	$\operatorname{dim}(A)=\operatorname{dim}(B)$
Division 1	X solution of $A X=B$	A $\backslash \mathrm{B}$	Compatility
Division 2	X solution of $X A=B$	A $\backslash \mathrm{B}$	Compatility
Division element by element	$A_{i j} / B_{i j}$	A./B	$\operatorname{dim}(A)=\operatorname{dim}(B)$
Power of a matrix	A^{n}	$\mathrm{A}^{-} \mathrm{n}$	A square
Power element by element	$A_{i j}^{n}$	A. ${ }^{\wedge}$	
Trace	$\operatorname{tr}(A)$	trace(A)	A square
Determinant	$\operatorname{det}(A)$	$\operatorname{det}(\mathrm{A})$	A square
Kronecker product of 2 matrices	$A \otimes B$	kron(A, B)	
Inverse	A^{-1}	$\operatorname{inv}(\mathrm{A})$	A square
Rank	$\operatorname{rank}(A)$	$\operatorname{rank}(\mathrm{A})$	
Null space	($A V=0$)	$\mathrm{V}=\mathrm{null}(\mathrm{A})$	
Eigenvalue decomposition	$A=D P^{-1}$	$[\mathrm{P}, \mathrm{D}]=\mathrm{eig}(\mathrm{A})$	A square
Sum columnwize	$\sum_{i=1}^{\text {rows }(A)} A_{i}$.	$\operatorname{sum}(\mathrm{A})$	
Product columnwize	$\Pi_{i=1}^{\text {rows }(A)} A_{i}$.	prod (A)	

2.3 Some useful functions

2.3.1 Display text or array

disp(X) displays an array, without printing the array name. If X contains a text string, the string is displayed.
$\gg \operatorname{disp}($ Corn Oats Hay')
Corn Oats Hay

2.3.2 Sorting a matrix

sort (A) sorts the elements in ascending order. If A is a matrix, $\operatorname{sort}(\mathrm{X})$ treats the columns of A as vectors, returning sorted columns. E.g.:
$>A=\left[\begin{array}{llll}1 & 2 ; 3 & 5 ; 4 & 3\end{array}\right]$
A $=$
12
35
43

$>\operatorname{sort}(A)$

ans =
12
33
45

2.3.3 Sizes of each dimension of an array

size(A) returns the sizes of each dimension of matrix A in a vector. $[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$ returns the size of matrix A in variables m and n. $[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$ length (A) returns the size of the longest dimension of A and $\operatorname{size}(\mathrm{A}, \mathrm{i})$ gives the size of the i -th dimension (1 for rows and 2 for columns). E.g.:
$\gg \mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$
$\mathrm{m}=$
3
$\mathrm{n}=$
> length (A)
ans =
3

2.3.4 Sum of elements of a matrix

If A is a vector, sum(A) returns the sum of the elements. If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the sums of each column.
$>B=\operatorname{sum}(A)$
$B=$
810

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of the elements of A. If A is a matrix, cumsum(A) returns a matrix of the same size as A containing the cumulative sums for each column of $A . \gg \mathrm{B}=\operatorname{cumsum}(\mathrm{A})$
$B=$
12
47
810

2.3.5 Smallest (largest) elements of an array

If A is a matrix, $\min (A)$ treats the columns of A as vectors, returning a row vector containing the minimum element from each column. If A is a vector, $\min (\mathrm{A})$ returns the smallest element in A. $\max (\mathrm{A})$ returns the maximum elements.
$\gg \min (A)$
ans =
12

2.3.6 Descriptive statistics of matrices

mean $(\mathrm{X}, \mathrm{i}), \mathrm{i}=1,2$ returns the mean values of the elements along the i th dimension of the matrix $(1=$ columns, $2=$ rows $)$. std (X) returns the standard deviation. For matrices where each row is an observation and each column a variable $\operatorname{cov}(\mathrm{X})$ is the covariance matrix. Likewise, corrcoef (X) returns a matrix of correlation coefficients calculated from an input matrix whose rows are observations and whose columns are variables.

2.3.7 Determinant of a matrix

$\operatorname{det}(\mathrm{A})$ returns the determinant of the square matrix A.
$\gg A=\left[\begin{array}{lll}4 & 2 ; 1 & 3\end{array}\right]$;
$\gg B=\operatorname{det}(A)$
$B=$
10

2.3.8 Inverse of a matrix

$\operatorname{inv}(\mathrm{A})$ returns the inverse of the square matrix A.
$\gg \mathrm{C}=\operatorname{inv}(\mathrm{A})$
$\mathrm{C}=$

$$
\begin{array}{rr}
0.3000 & -0.2000 \\
-0.1000 & 0.4000
\end{array}
$$

In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv arises, when solving the system of linear equations $A x=b$. One way to solve this is with $\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$. A better way from both an execution time and numerical accuracy standpoint is to use the matrix division operator $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$.

2.3.9 Eigenvectors and eigenvalues of a matrix

The n-by- n (quadratic) matrix A can often be decomposed into the form $\mathbf{A}=\mathbf{P D P}^{-\mathbf{1}}$, where D is the matrix of eigenvalues and P is the matrix of eigenvectors. Consider

```
A =
    0.9500 0.0500
    0.2500 0.7000
```

$\gg P, D]=e i g(A)$
$P=0.7604-0.1684$
$0.6495 \quad 0.9857$
D $=$
$0.9927 \quad 0$
$0 \quad 0.6573$

If you are just interested in the eigenvalues,
$\gg \operatorname{eig}(A)$ will do.

3 Controlling the flow

The structure of the sequences of instructions used so far was rather straightforward; commands were executed one after the other, running from top to bottom. Like any computer programming language and programmable calculators Matlab offers, however, features that allow you to control the flow of command execution. If you have used these features before, this section will be familiar to you. On the other hand, if controlling the flow is new to you, this material may seem complicated at first; if this is the case, take it slow.

Controlling the flow is extremely powerful, since it lets past computations influence future operations. With the three following sets of instruction it is possible to cope with almost all the problems we shall encounter in computation. Because they often encompass numerous Matlab commands, they frequently appear in M-files, rather than being typed directly at the Matlab command window.

3.1 The FOR-loop

The most common use of a FOR-loop arises when a set of statements is to be repeated a fixed number of times n. The general form of a FOR-loop is:

For variable = expression
statements;
end;
A simple example of such a loop is: for $i=1: 10$; $x(i)=i ;$
end;
disp(${ }^{\prime}$)
Some other examples
Example 2: Assume you want to get the generate the matrix A such that:

$$
A_{i j}=i^{2}-j^{3}+1, \text { for } i=1, \ldots, 20 \text { and } j=1, \ldots, 10
$$

The code will be :

```
for i=1:1:20;
    for j=1:1:10;
        A(i,j)=i^2-j^3+1;
end;
```

end;

Example 3: Assume you want to compute $A_{i j}^{b}$, for b running from 0 to 1 with a step 0.1 , and display the result at each iteration. The code will be :

$A=[12 ; 21] ;$ for $b=0: 0.1: 1 ;$ $\quad C=A . \wedge b ;$	\% i runs from 0 to 1 with step 0.1
disp(C) end $;$	$\%$ displays C

3.2 The WHILE-loop

In contrast to the FOR-loop, with which the loop will pass through a fixed number n, WHILE-loops are executed until a condition is fulfilled.

The general syntax for a WHILE loop is the following:
while condition;
statements;
end;
So while the condition is satisfied, the statements will be executed. Consider the following example:

Example 1: Assume you want to find the fixed point of a dynamic relation that admits no analytical solution :

$$
x_{t+1}=1+x_{t}^{0.2}
$$

All you have to do is to iterate on the relation and stop when the absolute difference between two consecutive iterations is less than a tolerance criterion. The code will be :
tol $=1 \mathrm{e}-6$;
\% tolerance criterion
crit=1; \quad \% initialization of criterion
$\mathrm{x} 0=1$;
while crit>tol; $\mathrm{x}=1+\mathrm{x} 0^{\wedge} 0.2$; crit=abs ($\mathrm{x}-\mathrm{x} 0$) ; $\mathrm{x} 0=\mathrm{x}$; end;

3.3 The IF-statement

A third possibility of controlling the flow in Matlab is called the IFstatement. The IF-statement executes a set of instructions if a condition is satisfied. The general form is
if condition 1;
\% commands if condition 1 is TRUE
statements 1;
elseif condition 2;
\% commands if condition 2 is TRUE
statement 2;
else;
\% commands if condition 1 and 2 are both FALSE
statements 3 ;
end;
The last set of commands is executed if both condition 1 and 2 are false (i.e., not true). When you have just two conditions you skip the elseif condition and immediately go to else. An example should make the point clearer. Assume you have a demand function of the kind

$$
D(P)=\left\{\begin{array}{cl}
0 & \text { if } p \geq 2 \\
1-0.5 P & \text { if } 1 \leq p<2 \\
2 P^{-2} & \text { otherwise }
\end{array}\right.
$$

The code will be:

if $P>=2$;

```
    D=0; % statement 1
elseif (P>=1)&(P<2);
    D=1-0.5*P; % statement 2
else;
    D=2*P^(-2); % statement 3
end;
disp(D);
```


4 Input-Output tools

Input - output instructions are important because they allow you to display, save and use your results in other codes.

4.1 Input - output of texts

The first command to know is the display command : disp. It allows you to display a message, a value or whatever you want provided it's a text. Thus:
disp('This is a nice message')
will display "This is a nice message" on the screen. Assume A is a matrix of the form :

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

then :
disp(A)
will display :
1234
on the screen.
If now you want to store your results in a file, all you have to do is to open a file and display your results as if you wanted to see them printed on the screen. This is done with diary name_of_file. Do not forget to close your file with diary off. For example:
diary result.out disp('Hello world') diary off
will create a file named result. out containing the string "hello world".
Be careful instruction diary does not overwrite an existing file. You have to delete it first with delete name_of_file, if you do not want to add information on the existing file but overwrite it.

If you want the user to input information from the keyboard, use instruction input.
n=input('Give a number');
displays the message "Give a number" on the screen and wait for an answer. The result will be evaluated in the variable n.

If now you want to load data, all you have to do is to create an ASCII file containing the data. For example assume your data file, dat.txt, takes the form :

```
                                    1 2
                                    34
5 6
```

Just type :
load dat.txt -ascii;
And your data are stored in a matrix called dat, that you will manipulate as any other matrix.
With Matlab you can both export your data or calculated results and import external data.
The Save workspace as... menu item in the File menu opens a standard file dialog box for saving all current variables. Saving variables does not delete them from the Matlab workspace. Besides, Matlab provides the command save.
> save
stores the workspace in Matlab binary format in the file matlab.mat.
> save data
saves the workspace in Matlab binary format in the file data.mat.
> save capital capital
saves the variable capital in Matlab binary format in the file capital.mat.
> save capital capital -ascii
saves the variable capital in 8-digit ASCII text format in the file capital.txt. ASCII-formatted files may be edited using any common text editor.

5 Graphics

Matlab can produce both 2D and 3D plots.

5.1 Histogram

The instruction hist (x) draws a 10-bin histogram for the data in vector x . hist (x, c), where c is a vector, draws a histogram using the bins specified in c. Here is an example:
$\Rightarrow c=-2.9: 0.2: 2.9$;
$\gg x=r a n d n(5000,1)$;
\gg hist (x, c);

5.2 Plots

2D graphs essentially rely on the instruction plot. plot(y) plots the data in vector y versus its index, i.e.
$\gg y=r a n d(100,1)$;
$\gg c l f ;$
$\gg \operatorname{plot}(\mathrm{y})$
produces the following graph:
plot ($[\mathrm{y} x]$) plots the two column vectors of the matrix $[y \mathrm{x}]$ versus their index (within the same graph).

The general form of the plot instruction is

plot (x, y, S)
where x and y are vectors or matrices and S is a one, two or three character string specifying colour, marker symbol or line style. plot (x, y, S) plots y against x , if y and x are vectors. If y and x are matrices, the columns of y are plotted versus the columns of x in the same graph. If only y or x is a matrix, the vector is plotted versus the rows or columns of the matrix. Note that $\mathrm{plot}(\mathrm{x},[\mathrm{a} \mathrm{b}], \mathrm{S})$ and $\mathrm{plot}(\mathrm{x}, \mathrm{a}, \mathrm{S}, \mathrm{x}, \mathrm{b}, \mathrm{S})$, where a and b are vectors, are alternative ways to create exactly the same scatterplot.

The S string is optional and is made of the following (and more) characters:
Line style:

Colour:

	Yellow	Red	Green	Blue	Cyan	Magenta	White	Black
Symbol	Y	r	g	b	C	M	w	k

Marker specifier:

	Point	Circle	Asterisk	Cross
Symbol	.	O	*	x

Thus,

> $\operatorname{plot}(X, Y, ' b * ')$
plots a blue asterisk at each point of the data set.

Here is an example:
$\gg \mathrm{x}=\mathrm{pi} *(-1: .01: 1)$;
$\gg y=\sin (x)$;
\gg clf;
$\gg \operatorname{plot}\left(x, y,{ }^{\prime} b^{-}\right)$;

Adding titles, labels and grids You can add titles and labels to your plot, using instructions:
» title('atitle') \% Obvious
$\gg x$ xabel('alabel') \% Label on the x axis
$\gg y l a b e l(' a l a b e l ') ~ \% ~ L a b e l ~ o n ~ t h e ~ y ~ a x i s ~$
Using grid, you can even add a grid to your plot. E.g.:
$\gg \mathrm{x}=\mathrm{pi} *(-3: .01: 3)$;
$\gg y 1=\sin (x)$;
$\gg y 2=\cos (x)$;
$\gg c l f ;$
$\gg \operatorname{plot}\left(x, y 1,{ }^{\prime} b^{\prime}, x, y 2,{ }^{\prime} r^{\prime}\right)$;
\gg title('A nice example?');
$\gg y l a b e l(' T h e ~ f u n c t i o n s ') ;$
$\gg x l a b e l(' T h e ~ v a l u e s ') ;$
\gg grid;

Creating subplots

You can also have many graphs on the screen, using the instruction subplot (rcn) where r, c, and n , respectively, denotes the number of rows, columns and the number of the graph:
$\Rightarrow x=[-3: .01: 3]$;
$\gg y 1=\exp (-0.5 * x . \wedge 2) /$ sqrt (2*pi) ;
$\gg y 2=\sin (x)$;
$\Rightarrow y 3=\cos (x)$;
$\gg y 4=a b s(\operatorname{sqrt}(x))$;
$\gg \mathrm{clf}$;
\gg subplot(221); \% figure 1 out of 4
$\gg \operatorname{plot}(x, y 1)$;
> ylabel('Y1');
> xlabel('X');
\gg title('Gaussian');
\gg subplot(222); \% figure 2 out of 4
$\gg \operatorname{plot}(x, y 2)$;
》 ylabel('Y2');
$\gg x l^{2}$ ('Xel');
\Rightarrow title('Sin(X)');
\gg subplot(223); \% figure 3 out of 4
$\gg \operatorname{plot}(\mathrm{x}, \mathrm{y} 3)$;
》 ylabel('Y3');
$\gg x l a b e l(' X ') ;$
\gg title('Cos(X)');
\gg subplot(224); \% figure 4 out of 4
$\gg \operatorname{plot}(x, y 4)$;
> ylabel('Y4');
$\gg x l a b e l(' X ')$;
\gg title('Abs(Sqrt(X))');

5.3 3D plots

The plot command from the two-dimensional world can be extended into three dimensions with plot3. The format is the same as the twodimensional plot, except the data are in triples rather than in pairs. The generalized format of plot3 is plot3($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{~S}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \mathrm{~S}_{2}, \ldots$), where $\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$, and z_{n} are vectors or matrices, and S_{n} are optional character strings specifying colour, marker symbol or line style. Here is an example:

```
t=linspace(0,10*pi);
> plot3(sin(t),cos(t),t,'b*');
> xlabel('sin(t)'),zlabel('t');
```

Next we consider mesh plots. Matlab defines a mesh surface by the z-coordinates of points above a rectangular grid in the $x-y$ plane. It forms a plot by joining adjacent points with straight lines. The result looks like a fishing net with the knots at the data points. Mesh plots are very useful for visualizing large matrices or for plotting functions of two variables.

The first step in generating the mesh plot of a function of two variables, $z=f(x, y)$, is to generate X and Y matrices consisting of repeated rows and columns, respectively, over some range of the variables x and y. Matlab provides the function meshgrid for this purpose. $[\mathrm{X}, \mathrm{Y}]=$ meshgrid (x, y) creates a matrix X whose rows are copies of the vector X, and a matrix Y whose columns are copies of the vector y. This pair of matrices may then be used to evaluate functions of the two variables using Matlab's array mathematics features. Here is an example:
$\gg \mathrm{x}=[-7.5: .5: 7.5]$;
$\gg y=x$;
$\gg \mathrm{X}, \mathrm{Y}]=\mathrm{meshgrid}(\mathrm{x}, \mathrm{y})$;
$\gg R=$ sqrt (X.^2+Y.^2)+eps;
$\Rightarrow \mathrm{Z}=\sin (\mathrm{R}) . / \mathrm{R}$; ;
$\gg \operatorname{mesh}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$;

Saving graphs

To save the resulting graph in a file just use the instruction print. Its general syntax is given by:
print -options name_of_file
To save the graph in a jpg-format you type:
print -djpeg graph.jpg
To save the graph in a ps-format you type:
print -dps graph.eps

$6 \quad$ Scripts and functions

Up to now, we were content to input individual commands in the Matlab command window. For more complex functions or frequently needed sequences of instructions this is, however, extremely unsatisfying. Matlab offers us two possibilities of processing or of automating such sequences more comfortably: script M-files and function M-files.

6.1 Script M-files

Matlab allows you to place Matlab commands in a simple text file, and then tell Matlab to open the file and evaluate commands exactly as it would if you had typed them in the Matlab command window. These files are called script M-files. The term "script" symbolizes the fact that Matlab simply reads from "script" found in the file. The term "M-file" recognizes the fact that script filenames must end with the extension .m. Further, the name of an M-file has to begin with an alphabetical letter.

To create a script M-file, choose New from the File menu and select M-file (alternatively you just type edit in the Matlab prompt and press Enter). This procedure brings up a text editor window, the Matlab editor/debugger. Let's type the following sequence of statements in the editor window:
$A=\left[\begin{array}{ll}1 & 2\end{array}\right]$;
$B=\left[\begin{array}{ll}3 & 4\end{array}\right]$;

$\mathrm{C}=\mathrm{A}+\mathrm{B}$

This file can be saved as the M-file example.m on your disk by choosing Save from the File menu. Matlab executes the commands in example.m when you simply type example in the Matlab command window (provided there is a file example.m in your working directory or path ${ }^{1}$). $>$ example
$C=$
46
The use of scripts is particularly handy when you are coding problems that consist of a large number of connected and complex indexing steps. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace, to be used in subsequent computations. Moreover, scripts can produce graphical output using functions like plot.

6.2 Function M-files

A function M-file is similar to a script file in that it is a text file having a .m extension. As with script M-files, function M-files are created with a text editor. A function M -file is different from a script file in that a function communicates with the Matlab workspace only through their variables passed to it and through the output variables it created. Intermediate variables within the function do not appear in, or interact with, the Matlab workspace. Functions operate on variables within their own workspace, separate from the workspace you access at the Matlab command window. If we call a function within a code, Matlab will search the work directory for the name of the invoked M-file, minus its extension.

We have encountered examples of function M -files in paragraph 2,

[^0]already. Some built-in functions, like \gg ones, are part of the Matlab core Others, like $>$ std, are implemented in M-files. You can see the code and even modify it if you want ${ }^{2}$. Apart from the function M-files incorporated in the Matlab package, you can write functions on your own, download them from other users homepages on the internet or buy them separately in so called toolboxes.

6.2.1 Defining your own function M-files

We add new functions to Matlab's vocabulary by expressing them in terms of existing commands and functions. The general syntax for defining a function is

Function[output1,..]=<name of function>(input1,..);
\% include here the text of your online help!
statements;
The first line of a function M-file defines the M -file as a function and specifies its name (its file name without the.m extension). The name of the M-file and the one of the function should be the same. It also defines its input and output variables.
Next, there is a sequence of comment lines with the text displayed in response to the help command:
> help <name of function>.
Finally the remainder of the M-file contains Matlab commands that create the output variables
Let's consider an example: We would like to build a function, that gives us the mean and the standard deviation of a vector. (Suppose we don't know that there is a respective built-in function.)
function $[m x, s t x]=$ stat (x);
\%
\% function [mx,stx]=stat(x)
\% Computes the mean and standard deviation of a

[^1]$\%$ vector x
$\% \mathrm{x}$: a vector (column or row)
$\% \mathrm{mx}$: mean of vector
$\%$ stx: standard deviation of vector
\%
lx=length (x) ;
$m x=\operatorname{sum}(x) / l x$;
$\operatorname{stx}=(\operatorname{sum}((x-m x) . \wedge 2) /(1 x-1))^{\wedge}(1 / 2)$;

The name of the function is stat. The input vector is called x. Output consists of two respective variables, $m x$ and stx. After every line that starts with a \% there is your text of the online help. What follows next are some familiar Matlab statements. First we define the scalar lx as the length of the input vector. Then we define the scalars $m x$ and stx.
You now want to include and use your new function. For this purpose you change to the command window. Suppose, your input is a 1-by-100 random vector.

```
> x=randn (1, 100);
> [mx,stx]=stat(x)
mx =
    0.0407
stx =
    0.8797
```

You get the variables $m x$ and stx as an output.

A more sophisticated example

An often encountered problem in economics is the computation of the steady state of a model. This can be accomplished using the fsolve routine that solves non linear systems. For example in the standard growth case you will have to solve the system ${ }^{3}$:

$$
\begin{align*}
1 & =\beta\left(\alpha A k^{\alpha-1}+1-\delta\right) \tag{1}\\
\delta k & =A k^{\alpha}-c \tag{2}
\end{align*}
$$

[^2]Then you will create a function of 2 variables, let's call it steady, in a file steady.m :
function $z=s t e a d y(x)$;
alpha=0.35; beta=0.99; delta=0.025; A=1;
$\mathrm{k}=\mathrm{x}(1)$; $\mathrm{c}=\mathrm{x}(2)$;
$z=z e r o s(2,1) ; \quad \%$ Initialization of z.
$z(1)=1$-beta* (alpha*A*k~ (alpha-1)+1-\delta) ; $z(2)=$ delta $* \mathrm{k}-\left(\mathrm{A} * \mathrm{k}^{\wedge}\right.$ alpha-c); $\quad \begin{array}{l}\text { \% written } \mathrm{f}(\mathrm{x})=0\end{array}$
and then create another file in which you define an initial condition for the fsolve algorithm and call fsolve :
$k 0=10 ; c 0=1$; $x 0=[k 0 ; c 0]$; sol=fsolve('steady', $x 0$);

6.2.2 Downloading and using function M-files from the internet

The internet contains a huge number of Matlab M-files. For instance, visit http://www.helsinki.fi/WebEc/framec.html

6.2.3 Toolboxes

Finally, function M-files can be part of a so-called toolbox. A toolbox is a collection of function M-files that extend the capability of Matlab. In addition to the toolboxes that accompany basic Matlab, many other specific toolboxes (such as statistics or optimization) can be bought separately.

References

[1] Einführung in Matlab. University of Munich http://www.stat.uni-muenchen.de/~boehme/matlabkurs/lecture1.html
[2] Noisser, Robert (1998). Matlab Einführung. University of Vienna http://www.iert.tuwien.ac.at/support/matlab_1.htm
[3] Sigmon, Kermit (1992). Matlab Primer 2nd edition. Department of Mathematics, University of Florida
[4] The Student Edition of MATLAB. Version 5, User's Guide (1997)

[^0]: ${ }^{1}$ Do modify the default adjustments over File/Set Path/Path or by pressing the button "Path Browser" in the command window toolbar. A third way would be to use DOS-commands: \gg dir lists the files in the current directory; \gg cd prints out the current directory; \gg cd. . changes to the directory above the current one

[^1]: ${ }^{2}$ In order to check whether a built-in function is an M-file or not, you can use your Windows Explorer Tools/Find/Files or Folders and look for the respective name of the function plus its extension, e.g. std.m. If it is indeed an M-file you can open it.

[^2]: ${ }^{3}$ This can be solved by hand, but it is a simple and appealing example.

