
Introduction to Matlab, Version 6.0.0

Harris Dellas Kurt Schmidheiny Manuel Wälti

Winter Term 2004

Contents

1 Introduction 1

2 Matrix construction and manipulation 2
2.1 Building a matrix . 2
2.2 Basic manipulations . 3
2.3 Some useful functions . 6

3 Controlling the flow 8
3.1 The FOR-loop . 8
3.2 The WHILE-loop . 9
3.3 The IF-statement . 9

4 Input–Output tools 10
4.1 Input – output of texts . 10

5 Graphics 11
5.1 Histogram . 11
5.2 Plots . 11
5.3 3D plots . 14

6 Scripts and functions 14
6.1 Script M-files . 14
6.2 Function M-files . 15

References I

1 Introduction

This short note aims at introducing you to the basics of Matlab.

Preliminaries

In what follows, typeset letters denote matlab code.

After typing a command you execute it by pressing the enter key. The
output generated by your commands is stored in Matlab and can be accessed
by simply typing the appropriate name. Issuing the command clear x

clears the value of variable x from the memory and clear clears all values
that have been created during a matlab session.

To interrupt a running execution, type Ctrl+C.

In general, when you enter � C, Matlab does the following: It first checks
to see if C is a variable in the Matlab workspace; if not, it checks to see
if C is a built-in-function; if not, it checks if an M-file named C.m exists
in the current directory; if not, it checks to see if C.m exists anywhere on
the Matlab search path, by searching the path in the order in which it is
specified. Finally, if Matlab can’t find C.m anywhere on the Matlab search
path, an error message will appear in the command window.

The command dir provides a list of all files in the directory (or folder)
while cd directory-name changes from the current directory to the one
specified. cd .. changes the directory to the one above it.

In the appendix you can find explanations for the functions and operations
that are not fully described in the text. Alternatively, if you need help,
type help for a list of help topics. If you need help regarding a particular
command, say, log, type help log.

When Matlab displays numerical results it displays real numbers with
four digits to the right of the decimal point. If you want to have more

2 MATRIX CONSTRUCTION AND MANIPULATION 2

than four digits displayed issue the command format long. To go back
to displaying four digits after the decimal point (the default setting), type
format short.

Note also that a “;” at the end of a line tells Matlab not to display the
results from the command it executes. Text following % is interpreted as a
comment (plain text) and is not executed. A . . . means that the line
does not end at the physical end of the line but rather spills into the next
line.

2 Matrix construction and manipulation

In Matlab each variable is a matrix (or rectangular data array). Since a
matrix contains m rows and n columns, it is said to be of dimension m-by-
n. An m-by-1 or 1 -by-n matrix ist called a vector. A scalar, finally, is a
1 -by-1 matrix.

You can give a matrix whatever name you want. Numbers may be in-
cluded in the names. Matlab is sensitive with respect to the upper or lower
case. If a variable has previously been assigned a value, the new value
overrides the old one.

2.1 Building a matrix

There are several ways to build a matrix.

• One way to do it is to declare a matrix as if you wrote it by hand

� A=[1 2 3

4 5 6]

A =

This will produce the matrix

1 2 3

4 5 6

• Another way is to separate rows with ‘;’

� B=[4 5 6;7 8 9]

• A final way is to do it element by element

� C(1,1)=3;
� C(1,2)=4;
� C(1,3)=5;
� C(1,1)=6;
� C(2,2)=7;
� C(2,3)=8;

There are some special matrices that are extremely useful:

• The zero (or Null) matrix: zeros(m,n) creates a m-by-n matrix of
zeros. Thus,

� D=zeros(2,3)

produces D =
0 0 0

0 0 0

• The ones matrix: ones(m,n) creates a m-by-n matrix of ones.
� E=ones(2,3)

E =
1 1 1

1 1 1

• The identity matrix: eye(n) creates a (n × n) matrix with ones along
the diagonal and zeros everywhere else.

� F=eye(3)

F =
1 0 0

0 1 0

0 0 1

2 MATRIX CONSTRUCTION AND MANIPULATION 3

• You can generate a (n×m) matrix of random elements using the com-
mand rand(n,m), for uniformly distributed elements, or randn(n,m),
for normally distributed elements. That is, rand will draw numbers in
[0;1] while randn will draw numbers from a N (0, 1) distribution.

• The empty matrix is useful for initializing a matrix :

A=[];

will set A to be an empty matrix.

• A string matrix. A variable in Matlab can be one of two types:
numeric or string. A string matrix is like any other, except the
elements in it are interpreted as ASCII numbers. To create a string
variable, we enclose a string of characters in apostrophes. Since a string
variable is in fact a row vector of numbers, it is possible to create a list
of strings by creating a matrix in which each row is a separate string.
Note: As with all standard matrices, the rows must be of the same
length.

� x=[’ab’;’cd’]

x =

ab

cd

� x=[’ab’ ’cd’]

x =

abcd

2.2 Basic manipulations

You can build matrices out of several submatrices. Suppose you have the
matrices A,B,C,D .

� A=[1 2;3 4];
� B=[5 6 7;8 9 10];
� C=[3 4;5 6];
� D=[1 2 3;4 5 6];

In order to build E , which is given by

[

A B

C D

]

, you type:

� E=[A B;C D]

E =
1 2 5 6 7

3 4 8 9 10

3 4 1 2 3

5 6 4 5 6

Now, suppose you want to extract particular elements from a matrix.
Consider the matrix :

A =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Suppose you want to isolate the central matrix :

B =

2 3
3 4
4 5
5 1

All we have to type in matlab is :

B=A(1:4,2:3)

1:4 means the sequence 1 2 3 4 and 2:3 the sequence 2 3, so that
B=A(1:4,2:3) will just select in A the rows 1 2 3 4 and columns 2 and
3.

Assume we just want to select columns 1 and 3, but take all the lines.
We have to write :

B=A(:,[1 3]);

The : means select all, while [1 3] means select all the elements of the
the 1st and 3rd column of the matrix.

2 MATRIX CONSTRUCTION AND MANIPULATION 4

Deletion Now suppose you want to delete some elements of matrix A.

A(:, 3)= []

This deletes the third column of A.

Replacement

A(2:3,1:2)= zeros(2)

replaces the specified elements with zeros. Similarly,

A(2,:)= 8

replaces the specified element with 8.

Vectorization Consider the matrix :

A =

1 2
3 4
5 6

And assume that we just want to obtain its vectorization, then we just have
to type :

B=A(:);

to get :

B =

1
3
5
2
4
6

If we want to obtain the A matrix from B, we just use the reshape

command :

A=reshape(B,3,2)

that means that it will take the B vector and form a matrix (3 × 2).

Replication

This is how we can replicate a matrix (tile it) horizontally or vertically

B=repmat(A,3,2)

This creates the matrix
A A A

A A A

Transpose

Finally, in order to obtain the transpose of a matrix we just use the ’ operator

B=A’;

Here is a table of some other useful manipulations :

rot90(A) rotation of A
fliplr(A) flip matrix left to right
flipud(A) flip matrix up and down
diag(A) create or extract the diagonal of A
diag(A,i) extract the i-th diagonal above the main one of A
diag(A,-i) extract the i-th diagonal below the main one of A
tril(A) Lower triangular part of A
triu(A) Upper triangular part of A

Logical and relational operators

You can also extract (or add) elements from a matrix using logical or re-
lational operators. Suppose that we want to select the elements that are
greater or equal to 3 in the matrix and store them in a vector B :

B=A(A>=3);

if A(i, j) >= 3 then it will be stored in vector B.
Now suppose you simply want to know the location of the elements that

satisfy a particular property (let as say, equal or greater than 3). The
command

2 MATRIX CONSTRUCTION AND MANIPULATION 5

B=A>=3;

will reproduce the A matrix A but with elements that take the value of 1
(if the condition is satisfied) or 0 (if the condition is not satisfied. That is,

B =

0 0
1 1
1 1

If you simply want to know the location of the elements that satisfy this
condition, you type

[i,j]=find(A>=3);

This can be very handy when you have a very large matrix and you are
searching for particular elements.

Other relational operators are

< > Less (greater) than
<= >= Less (greater) than or equal to
== Equal to
∼= Not equal to

Logical operators can play a similar role. For instance, suppose you want
to extract those elements of A that are not equal to 3 and at the same time
they are greater than 4. This can be accomplished by

B=A(A~=3 & A>4);

The logical operators include

& AND
| OR
∼ NOT

2.2.1 Basic matrix operations

Arithmetic operations on matrices are straightforward. Some attention need
to be paid when doing divisions.

+ - Addition and subtraction
* Multiplication
/ Right division
ˆ Exponentiation

E.g., consider the vectors a and b and a scalar i :

� a=1:5;
� b=[6:10]’;
� i=3;

The vector d and the matrix E are given by:

� d=a+i*a

d =

4 8 12 16 20

� E=b*a

E =
6 12 18 24 30

7 14 21 28 35

8 16 24 32 40

9 18 27 36 45

10 20 30 40 50

What, if the matrices involved in the operation are of incompatible
sizes? Not surprisingly, will not do it statement such as:

� E=a*d

??? Error using ==> *

Matrix dimensions must agree.

Element-by-element operations

2 MATRIX CONSTRUCTION AND MANIPULATION 6

To do array (element-by-element) operation rather than matrix operations
precede a standard operator with a period (dot). Matlab array operations
include multiplication (.*), division (./) and exponentiation (.ˆ). (Array
addition and subtraction are not needed and, in fact, are not allowed,
since they would simply duplicate the operations of matrix addition and
subtraction.) Thus, the “dot product” of x and y is

� x=[1 2 3];
� y=[4 5 6];
� x.*y

ans =

4 10 18

You may divide all the elements in one matrix by the corresponding
elements in another, producing a matrix of the same size, as in:
C = A ./ B

In each case, one of the operands may be a scalar. This proves handy when
you wish to raise all elements in a matrix to a power. For example:

x =

1 2 3

� x.^2

ans =

1 4 9

Basic Operations :

Here is a table of basic operations you can do in Matlab :

Action Math. equivalent Matlab Comment
Size A is (r × c) [r,c]=size(A)

Transposition A′ A’

Addition A + B A+B dim(A) = dim(B)
Product A B A*B Compatility
Product element by element AijBij A.*B dim(A) = dim(B)
Division 1 X solution of A X = B A\ B Compatility
Division 2 X solution of X A = B A\ B Compatility
Division element by element Aij/Bij A./B dim(A) = dim(B)
Power of a matrix An A^ n A square
Power element by element An

ij
A.^ n

Trace tr(A) trace(A) A square
Determinant det(A) det(A) A square
Kronecker product of 2 matrices A ⊗ B kron(A,B)

Inverse A−1 inv(A) A square
Rank rank(A) rank(A)

Null space (A V = 0) V=null(A)

Eigenvalue decomposition A = D P−1 [P,D]=eig(A) A square

Sum columnwize
∑rows(A)

i=1
Ai. sum(A)

Product columnwize Π
rows(A)
i=1 Ai. prod(A)

2.3 Some useful functions

2.3.1 Display text or array

disp(X) displays an array, without printing the array name. If X contains
a text string, the string is displayed.

� disp(’ Corn Oats Hay’)

Corn Oats Hay

2.3.2 Sorting a matrix

sort(A) sorts the elements in ascending order. If A is a matrix, sort(X)
treats the columns of A as vectors, returning sorted columns. E.g.:

� A=[1 2;3 5;4 3]

A =
1 2

3 5

4 3

2 MATRIX CONSTRUCTION AND MANIPULATION 7

� sort(A)

ans =
1 2

3 3

4 5

2.3.3 Sizes of each dimension of an array

size(A) returns the sizes of each dimension of matrix A in a vector.
[m,n]=size(A) returns the size of matrix A in variables m and n.
[m,n]=size(A) length(A) returns the size of the longest dimension of A
and size(A,i) gives the size of the i-th dimension (1 for rows and 2 for
columns). E.g.:

� [m,n]=size(A)

m =

3

n =

2

� length(A)

ans =

3

2.3.4 Sum of elements of a matrix

If A is a vector, sum(A) returns the sum of the elements. If A is a matrix,
sum(A) treats the columns of A as vectors, returning a row vector of the
sums of each column.

� B=sum(A)

B =

8 10

If A is a vector, cumsum(A) returns a vector containing the cumulative
sum of the elements of A. If A is a matrix, cumsum(A) returns a matrix
of the same size as A containing the cumulative sums for each column of
A.� B=cumsum(A)

B =
1 2

4 7

8 10

2.3.5 Smallest (largest) elements of an array

If A is a matrix, min(A) treats the columns of A as vectors, returning a
row vector containing the minimum element from each column. If A is
a vector, min(A) returns the smallest element in A. max(A) returns the
maximum elements.

� min(A)

ans =

1 2

2.3.6 Descriptive statistics of matrices

mean(X,i), i=1,2 returns the mean values of the elements along the i-
th dimension of the matrix (1 = columns, 2 = rows). std(X) returns the
standard deviation. For matrices where each row is an observation and each
column a variable cov(X) is the covariance matrix. Likewise, corrcoef(X)
returns a matrix of correlation coefficients calculated from an input matrix
whose rows are observations and whose columns are variables.

2.3.7 Determinant of a matrix

det(A) returns the determinant of the square matrix A.

� A=[4 2;1 3];
� B=det(A)

3 CONTROLLING THE FLOW 8

B =

10

2.3.8 Inverse of a matrix

inv(A) returns the inverse of the square matrix A.

� C=inv(A)

C =
0.3000 -0.2000

-0.1000 0.4000

In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises, when solving the system of linear
equations Ax = b. One way to solve this is with x = inv(A)*b. A better
way from both an execution time and numerical accuracy standpoint is to
use the matrix division operator x = A\b.

2.3.9 Eigenvectors and eigenvalues of a matrix

The n-by-n (quadratic) matrix A can often be decomposed into the form
A = PDP−1, where D is the matrix of eigenvalues and P is the matrix of
eigenvectors. Consider

A =
0.9500 0.0500

0.2500 0.7000

� [P,D]=eig(A)

P =
0.7604 -0.1684

0.6495 0.9857

D =
0.9927 0

0 0.6573

If you are just interested in the eigenvalues,

� eig(A) will do.

3 Controlling the flow

The structure of the sequences of instructions used so far was rather
straightforward; commands were executed one after the other, running
from top to bottom. Like any computer programming language and
programmable calculators Matlab offers, however, features that allow you
to control the flow of command execution. If you have used these features
before, this section will be familiar to you. On the other hand, if controlling
the flow is new to you, this material may seem complicated at first; if this
is the case, take it slow.

Controlling the flow is extremely powerful, since it lets past compu-
tations influence future operations. With the three following sets of
instruction it is possible to cope with almost all the problems we shall
encounter in computation. Because they often encompass numerous Matlab
commands, they frequently appear in M-files, rather than being typed
directly at the Matlab command window.

3.1 The FOR-loop

The most common use of a FOR-loop arises when a set of statements is
to be repeated a fixed number of times n. The general form of a FOR-loop is:

For variable = expression;

statements;

end;

A simple example of such a loop is: for i=1:10;

x(i)=i;

end;

disp(x’)

Some other examples

Example 2 : Assume you want to get the generate the matrix A such that :

Aij = i2 − j3 + 1, for i = 1, . . . , 20 and j = 1, . . . , 10

3 CONTROLLING THE FLOW 9

The code will be :

for i=1:1:20; % i runs from 1 to 20 with step 1 : for i=init:step:final

for j=1:1:10; % j runs from 1 to 10 with step 1 : for j=init:step:final

A(i,j)=i^2-j^3+1;

end;

end;

Example 3 : Assume you want to compute Ab
ij , for b running from 0 to 1

with a step 0.1, and display the result at each iteration. The code will be :

A=[1 2;2 1];

for b=0:0.1:1; % i runs from 0 to 1 with step 0.1

C=A.^b;

disp(C) % displays C

end;

3.2 The WHILE-loop

In contrast to the FOR-loop, with which the loop will pass through a fixed
number n, WHILE-loops are executed until a condition is fulfilled.

The general syntax for a WHILE loop is the following:

while condition;

statements;

end;

So while the condition is satisfied, the statements will be executed.
Consider the following example:

Example 1 : Assume you want to find the fixed point of a dynamic relation
that admits no analytical solution :

xt+1 = 1 + x0.2
t

All you have to do is to iterate on the relation and stop when the abso-
lute difference between two consecutive iterations is less than a tolerance
criterion. The code will be :

tol=1e-6; % tolerance criterion

crit=1; % initialization of criterion

x0=1; % initial value for x

while crit>tol;

x=1+x0^0.2; % The dynamic relation

crit=abs(x-x0); % Absolute difference between 2 consecutive iterations

x0=x; % the new x(t) is the one found.

end;

3.3 The IF-statement

A third possibility of controlling the flow in Matlab is called the IF-
statement. The IF-statement executes a set of instructions if a condition
is satisfied. The general form is

if condition 1;

% commands if condition 1 is TRUE

statements 1;

elseif condition 2;

% commands if condition 2 is TRUE

statement 2;

else;

% commands if condition 1 and 2 are both FALSE

statements 3;

end;

The last set of commands is executed if both condition 1 and 2 are
false (i.e., not true). When you have just two conditions you skip the
elseif condition and immediately go to else. An example should make
the point clearer. Assume you have a demand function of the kind

D(P) =

0 if p ≥ 2
1 − 0.5P if 1 ≤ p < 2

2P−2 otherwise

The code will be:

P=input(’enter a price :’); % displays the message

% ’.’ on the screen and

% waits for an answer

if P>=2;

4 INPUT–OUTPUT TOOLS 10

D=0; % statement 1

elseif (P>=1)&(P<2);

D=1-0.5*P; % statement 2

else; % otherwise

D=2*P^(-2); % statement 3

end;

disp(D);

4 Input–Output tools

Input – output instructions are important because they allow you to display,
save and use your results in other codes.

4.1 Input – output of texts

The first command to know is the display command : disp. It allows you
to display a message, a value or whatever you want provided it’s a text.
Thus :

disp(’This is a nice message’)

will display “This is a nice message” on the screen. Assume A is a
matrix of the form :

A =

(

1 2
3 4

)

then :

disp(A)

will display :

1 2 3 4

on the screen.
If now you want to store your results in a file, all you have to do is to

open a file and display your results as if you wanted to see them printed on
the screen. This is done with diary name of file. Do not forget to close
your file with diary off. For example :

diary result.out disp(’Hello world’) diary off

will create a file named result.out containing the string “hello world”.
Be careful instruction diary does not overwrite an existing file. You

have to delete it first with delete name of file, if you do not want to add
information on the existing file but overwrite it.

If you want the user to input information from the keyboard, use instruc-
tion input.

n=input(’Give a number’);

displays the message “Give a number” on the screen and wait for an an-
swer. The result will be evaluated in the variable n.

If now you want to load data, all you have to do is to create an ASCII
file containing the data. For example assume your data file, dat.txt, takes
the form :

1 2
3 4
5 6

Just type :

load dat.txt -ascii;

And your data are stored in a matrix called dat, that you will manipulate
as any other matrix.

With Matlab you can both export your data or calculated results and
import external data.

The Save workspace as. . . menu item in the File menu opens a
standard file dialog box for saving all current variables. Saving variables
does not delete them from the Matlab workspace. Besides, Matlab provides
the command save.

� save

stores the workspace in Matlab binary format in the file matlab.mat.

� save data

saves the workspace in Matlab binary format in the file data.mat.

5 GRAPHICS 11

� save capital capital

saves the variable capital in Matlab binary format in the file capi-
tal.mat.

� save capital capital -ascii

saves the variable capital in 8-digit ASCII text format in the file
capital.txt. ASCII-formatted files may be edited using any common text
editor.

5 Graphics

Matlab can produce both 2D and 3D plots.

5.1 Histogram

The instruction hist(x) draws a 10-bin histogram for the data in vector x.
hist(x,c), where c is a vector, draws a histogram using the bins specified
in c. Here is an example:

� c=-2.9:0.2:2.9;
� x=randn(5000,1);
� hist(x,c);

5.2 Plots

2D graphs essentially rely on the instruction plot. plot(y) plots the data
in vector y versus its index, i.e.

� y=rand(100,1);
� clf;
� plot(y)

produces the following graph:
plot([y x]) plots the two column vectors of the matrix [y x] versus their
index (within the same graph).

The general form of the plot instruction is

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

plot(x,y,S)

where x and y are vectors or matrices and S is a one, two or three character
string specifying colour, marker symbol or line style. plot(x,y,S) plots y

against x, if y and x are vectors. If y and x are matrices, the columns of
y are plotted versus the columns of x in the same graph. If only y or x is
a matrix, the vector is plotted versus the rows or columns of the matrix.
Note that plot(x,[a b],S) and plot(x,a,S,x,b,S), where a and b are
vectors, are alternative ways to create exactly the same scatterplot.

The S string is optional and is made of the following (and more)
characters:
Line style:

Solid Dashed Dotted line Dash-dot line
Symbol - -- : -.

Colour:

5 GRAPHICS 12

Yellow Red Green Blue Cyan Magenta White Black
Symbol Y r g b C M w k

Marker specifier:

Point Circle Asterisk Cross
Symbol . O * x

Thus,

� plot(X,Y,’b*’)

plots a blue asterisk at each point of the data set.

Here is an example:

� x=pi*(-1:.01:1);
� y=sin(x);
� clf;
� plot(x,y,’b-’);

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Adding titles, labels and grids You can add titles and labels to your

plot, using instructions:

� title(’atitle’) % Obvious
� xlabel(’alabel’) % Label on the x axis
� ylabel(’alabel’) % Label on the y axis

Using grid, you can even add a grid to your plot. E.g.:

� x=pi*(-3:.01:3);
� y1=sin(x);
� y2=cos(x);
� clf;
� plot(x,y1,’b’,x,y2,’r-’);
� title(’A nice example?’);
� ylabel(’The functions’);
� xlabel(’The values’);
� grid;

5 GRAPHICS 13

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
A nice example?

T
he

 fu
nc

tio
ns

The values

Creating subplots

You can also have many graphs on the screen, using the instruction
subplot(rcn) where r, c, and n, respectively, denotes the number of rows,
columns and the number of the graph:

� x=[-3:.01:3];
� y1=exp(-0.5*x.^2)/sqrt(2*pi);
� y2=sin(x);
� y3=cos(x);
� y4=abs(sqrt(x));
� clf;
� subplot(221); % figure 1 out of 4
� plot(x,y1);
� ylabel(’Y1’);
� xlabel(’X’);
� title(’Gaussian’);
� subplot(222); % figure 2 out of 4

� plot(x,y2);
� ylabel(’Y2’);
� xlabel(’X’);
� title(’Sin(X)’);
� subplot(223); % figure 3 out of 4
� plot(x,y3);
� ylabel(’Y3’);
� xlabel(’X’);
� title(’Cos(X)’);
� subplot(224); % figure 4 out of 4
� plot(x,y4);
� ylabel(’Y4’);
� xlabel(’X’);
� title(’Abs(Sqrt(X))’);

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

Y
1

X

Gaussian

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Y
2

X

Sin(X)

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Y
3

X

Cos(X)

−4 −2 0 2 4
0

0.5

1

1.5

2

Y
4

X

Abs(Sqrt(X))

6 SCRIPTS AND FUNCTIONS 14

5.3 3D plots

The plot command from the two-dimensional world can be extended
into three dimensions with plot3. The format is the same as the two-
dimensional plot, except the data are in triples rather than in pairs. The
generalized format of plot3 is plot3(x1, y1, z1, S1, x2, y2, z2, S2, . . .), where
xn, yn, and zn are vectors or matrices, and Sn are optional character strings
specifying colour, marker symbol or line style. Here is an example:

� t=linspace(0,10*pi);
� plot3(sin(t),cos(t),t,’b*’);
� xlabel(’sin(t)’),zlabel(’t’);

Next we consider mesh plots. Matlab defines a mesh surface by the
z -coordinates of points above a rectangular grid in the x-y plane. It forms
a plot by joining adjacent points with straight lines. The result looks
like a fishing net with the knots at the data points. Mesh plots are very
useful for visualizing large matrices or for plotting functions of two variables.

The first step in generating the mesh plot of a function of two variables,
z = f(x, y) , is to generate X and Y matrices consisting of repeated rows
and columns, respectively, over some range of the variables x and y. Matlab
provides the function meshgrid for this purpose. [X,Y]=meshgrid(x,y)

creates a matrix X whose rows are copies of the vector x, and a matrix Y

whose columns are copies of the vector y. This pair of matrices may then
be used to evaluate functions of the two variables using Matlab’s array
mathematics features. Here is an example:

� x=[-7.5:.5:7.5];
� y=x;
� [X,Y]=meshgrid(x,y);
� R=sqrt(X.^2+Y.^2)+eps;
� Z=sin(R)./R;;
� mesh(X,Y,Z);

Saving graphs

To save the resulting graph in a file just use the instruction print. Its
general syntax is given by:

print -options name of file

To save the graph in a jpg-format you type:

print -djpeg graph.jpg

To save the graph in a ps-format you type:

print -dps graph.eps

6 Scripts and functions

Up to now, we were content to input individual commands in the Matlab
command window. For more complex functions or frequently needed se-
quences of instructions this is, however, extremely unsatisfying. Matlab
offers us two possibilities of processing or of automating such sequences
more comfortably: script M-files and function M-files.

6.1 Script M-files

Matlab allows you to place Matlab commands in a simple text file, and then
tell Matlab to open the file and evaluate commands exactly as it would
if you had typed them in the Matlab command window. These files are
called script M-files. The term “script” symbolizes the fact that Matlab
simply reads from “script” found in the file. The term “M-file” recognizes
the fact that script filenames must end with the extension .m. Further, the
name of an M-file has to begin with an alphabetical letter.

To create a script M-file, choose New from the File menu and se-
lect M-file (alternatively you just type edit in the Matlab prompt and
press Enter). This procedure brings up a text editor window, the Matlab
editor/debugger. Let’s type the following sequence of statements in the
editor window:

6 SCRIPTS AND FUNCTIONS 15

A=[1 2];

B=[3 4];

C=A+B

This file can be saved as the M-file example.m on your disk by choosing
Save from the File menu. Matlab executes the commands in example.m
when you simply type example in the Matlab command window (provided
there is a file example.m in your working directory or path1). � example

C =

4 6

The use of scripts is particularly handy when you are coding prob-
lems that consist of a large number of connected and complex indexing
steps. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return
output arguments, any variables that they create remain in the workspace,
to be used in subsequent computations. Moreover, scripts can produce
graphical output using functions like plot.

6.2 Function M-files

A function M-file is similar to a script file in that it is a text file having a .m
extension. As with script M-files, function M-files are created with a text
editor. A function M-file is different from a script file in that a function
communicates with the Matlab workspace only through their variables
passed to it and through the output variables it created. Intermediate
variables within the function do not appear in, or interact with, the Matlab
workspace. Functions operate on variables within their own workspace,
separate from the workspace you access at the Matlab command window.
If we call a function within a code, Matlab will search the work directory
for the name of the invoked M-file, minus its extension.

We have encountered examples of function M-files in paragraph 2,

1Do modify the default adjustments over File/Set Path/Path or by pressing the
button “Path Browser” in the command window toolbar. A third way would be to use
DOS-commands: � dir lists the files in the current directory; � cd prints out the
current directory; � cd.. changes to the directory above the current one

already. Some built-in functions, like � ones, are part of the Matlab core.
Others, like � std, are implemented in M-files. You can see the code and
even modify it if you want2. Apart from the function M-files incorporated
in the Matlab package, you can write functions on your own, download
them from other users homepages on the internet or buy them separately
in so called toolboxes.

6.2.1 Defining your own function M-files

We add new functions to Matlab’s vocabulary by expressing them in terms
of existing commands and functions. The general syntax for defining a
function is

Function[output1,..]=<name of function>(input1,..);

% include here the text of your online help!

statements;

The first line of a function M-file defines the M-file as a function
and specifies its name (its file name without the .m extension). The name
of the M-file and the one of the function should be the same. It also defines
its input and output variables.
Next, there is a sequence of comment lines with the text displayed in
response to the help command:

� help <name of function>.

Finally the remainder of the M-file contains Matlab commands that
create the output variables.
Let’s consider an example: We would like to build a function, that gives us
the mean and the standard deviation of a vector. (Suppose we don’t know
that there is a respective built-in function.)

function [mx,stx]=stat(x);

%

% function [mx,stx]=stat(x)

% Computes the mean and standard deviation of a

2In order to check whether a built-in function is an M-file or not, you can use your
Windows Explorer Tools/Find/Files or Folders and look for the respective name of
the function plus its extension, e.g. std.m. If it is indeed an M-file you can open it.

% vector x

% x: a vector (column or row)

% mx: mean of vector

% stx: standard deviation of vector

%

lx=length(x);

mx=sum(x)/lx;

stx=(sum((x-mx).^2)/(lx-1))^(1/2);

The name of the function is stat. The input vector is called x.
Output consists of two respective variables, mx and stx. After every line
that starts with a % there is your text of the online help. What follows next
are some familiar Matlab statements. First we define the scalar lx as the
length of the input vector. Then we define the scalars mx and stx.
You now want to include and use your new function. For this purpose
you change to the command window. Suppose, your input is a 1-by-100
random vector.

� x=randn(1,100);
� [mx,stx]=stat(x)

mx =

0.0407

stx =

0.8797

You get the variables mx and stx as an output.

A more sophisticated example

An often encountered problem in economics is the computation of the
steady state of a model. This can be accomplished using the fsolve routine
that solves non linear systems. For example in the standard growth case
you will have to solve the system3 :

1 = β(αAkα−1 + 1 − δ) (1)

δk = Akα − c (2)

3This can be solved by hand, but it is a simple and appealing example.

Then you will create a function of 2 variables, let’s call it steady, in a
file steady.m :

function z=steady(x);

alpha=0.35; beta=0.99; delta=0.025; A=1;

k=x(1); c=x(2);

z=zeros(2,1); % Initialization of z.

% Not necessary but recommended

z(1)=1-beta*(alpha*A*k^(alpha-1)+1-\delta); % Note that the function is

z(2)=delta*k-(A*k^alpha-c); % written f(x)=0

and then create another file in which you define an initial condition for
the fsolve algorithm and call fsolve :

k0=10; c0=1; x0=[k0;c0]; sol=fsolve(’steady’,x0);

6.2.2 Downloading and using function M-files from the internet

The internet contains a huge number of Matlab M-files. For instance, visit
http://www.helsinki.fi/WebEc/framec.html

6.2.3 Toolboxes

Finally, function M-files can be part of a so-called toolbox. A toolbox is
a collection of function M-files that extend the capability of Matlab. In
addition to the toolboxes that accompany basic Matlab, many other specific
toolboxes (such as statistics or optimization) can be bought separately.

References

[1] Einführung in Matlab. University of Munich
http://www.stat.uni-muenchen.de/∼boehme/matlab-
kurs/lecture1.html

[2] Noisser, Robert (1998). Matlab Einführung. University of Vienna
http://www.iert.tuwien.ac.at/support/matlab 1.htm

[3] Sigmon, Kermit (1992). Matlab Primer 2nd edition. Department of
Mathematics, University of Florida

[4] The Student Edition of MATLAB. Version 5, User’s Guide (1997)

I

